Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(1): 42-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612794

RESUMO

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.


Assuntos
Ralstonia solanacearum , Fímbrias Bacterianas , Virulência , Doenças das Plantas/microbiologia
2.
Int J Biol Macromol ; 256(Pt 1): 128253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989430

RESUMO

In recent years, hydrogels as drug carriers have been receiving great interest due to their ability to change their behavior in response to one or more external stimuli. However, their initial burst release profile limits their practical applications. Therefore, we prepared a bio-based hydrogel nanocomposite (HNC) using starch, itaconic acid, acrylic acid and gelatin in the presence of CNF/ZnO-based nanohybrid (ZONH) and used it to evaluate the pH-sensitive drug release properties in different pH solutions. The prepared HNCs were analyzed using various spectroscopic and microscopic techniques. The BET analysis and swelling test of the HNC indicated improved porosity and swelling capacity due to the addition of ZONH. From the drug release study, sustained drug release rate was observed at pH 4 than those at pH 7.4 and 9, indicating controlled release as well as pH responsive behavior of the HNC. Moreover, the drug released HNC was reused as a photocatalyst for dye degradation and achieved good degradation (%). The antibacterial activity of ZONH and HNC was observed against EC and SA bacterial strains from the antibacterial test. In summary, the prepared HNC can be considered as a potential sustainable DDS for biomedical applications as well as a photocatalyst for dye contaminated water treatment.


Assuntos
Nanocompostos , Nanofibras , Succinatos , Óxido de Zinco , Hidrogéis/química , Óxido de Zinco/química , Gelatina , Amido , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
3.
Colloids Surf B Biointerfaces ; 234: 113727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157766

RESUMO

Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections. A novel strategy in this regard involves using pH-responsive polymeric NPs within the acidic microenvironment of oral biofilms. The acidity of the oral biofilm microenvironment is governed by carbohydrate metabolism, accumulation of lactic acid, and extracellular DNA of extracellular polymeric substances by oral biofilm-forming microbial pathogens. This acidity also provides an opportunity to enhance antibacterial activity against biofilm cells using pH-responsive drug delivery approaches. Thus, various polymeric NPs loaded with poorly soluble drugs and responsive to the acidic pH of oral biofilms have been developed. This review focuses on various forms of such polymeric NPs loaded with drugs. The fundamental mechanisms of action of pH-responsive polymeric NPs, their cytological toxicity, and in vivo efficacy testing are thoroughly discussed.


Assuntos
Anti-Infecciosos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Polímeros/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
4.
Microb Pathog ; 185: 106433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913826

RESUMO

Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 µg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.


Assuntos
Nanopartículas Metálicas , Percepção de Quorum , Humanos , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Prata/farmacologia , Células CACO-2 , Células HEK293 , Antibacterianos/farmacologia , Biofilmes
5.
Curr Microbiol ; 80(8): 241, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300594

RESUMO

Laccases (EC 1.10.3.2) are considered one of the most prominent multicopper enzymes that exhibit the inherent properties of oxidizing a range of phenolic substrates. Mostly, reported laccases have been isolated from the plants and fungi species, whereas bacterial laccases are yet to be explored. Bacterial laccases have numerous distinctive properties over fungal laccases, including stability at high temperatures and high pH. This study includes the isolation of bacteria through the soil sample collected from the paper and pulp industry; the highest laccase-producing bacteria was identified as Bhargavaea bejingensis, using 16S rRNA gene sequencing. The extracellular and intracellular activities after 24 h incubation were 1.41 U/mL and 4.95 U/mL, respectively. The laccase-encoding gene of the bacteria was sequenced; moreover, the in vitro translated protein was bioinformatically characterized and asserted that the laccase produced by the bacteria Bhargavaea bejingensis was structurally and sequentially homologous to the CotA protein of Bacillus subtilis. The enzyme laccase produced from B. bejingensis was classified as three-domain laccase with several copper-binding residues, where a few crucial copper-binding residues of the laccase enzyme were also predicted.


Assuntos
Cobre , Lacase , Lacase/genética , Lacase/metabolismo , Cobre/química , RNA Ribossômico 16S/genética , Bacillus subtilis/metabolismo
6.
J Mater Chem B ; 11(13): 2927-2936, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36912351

RESUMO

In recent years, polysaccharide-based hydrogels have received increased attention due to their inherent biodegradability, biocompatibility, and non-toxicity. The feasibility of using polysaccharides for the synthesis of hydrogels is dependent on their noteworthy mechanical strength and cell compatibility, which are required for practical applications, especially for biomedical uses. In this study, we demonstrate a facile synthetic route for the construction of a mechanically tough, biocompatible, and biodegradable hydrogel using polysaccharides such as starch and agar. A synthetic monomer-free hydrogel was synthesized using epichlorohydrin as a cross-linker, and a mechanical strength of 9.49 ± 1.29-6.16 ± 0.37 MPa was achieved. The introduction of agar into the hydrogel resulted in agar dose-dependent swelling-induced mechanical strength. Moreover, along with incredible mechanical strength, the hydrogel also exhibited prominent cell viability against human embryonic kidney cells. In addition, the hydrogel showed good encapsulation efficiency for antibacterial drugs like ciprofloxacin hydrochloride hydrate, with controlled releasing ability over a sustained period. The antibacterial activity of the encapsulated drug was observed against Staphylococcus aureus and Bacillus subtilis bacterial strains. Thus, the studied hydrogel with loaded drug exhibited all the required qualities to be utilized as a promising candidate in wound dressing applications.


Assuntos
Hidrogéis , Amido , Humanos , Hidrogéis/farmacologia , Ágar , Antibacterianos/farmacologia , Polissacarídeos , Bandagens
7.
J Microbiol Methods ; 207: 106707, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931327

RESUMO

For enumerating viable bacteria, traditional dilution plating to count colony forming units (CFUs) has always been the preferred method in microbiology owing to its simplicity, albeit being laborious and time-consuming. Similar CFU counts can be obtained by quantifying growing micro-colonies in conjunction with the benefits of a microscope. Here, we employed a simple method of five to ten microliter spotting of a diluted bacterial culture multiple times on a single Petri dish followed by determining CFU by counting micro-colonies using a phase-contrast microscope. In this method, the CFU of an Escherichia coli culture can be estimated within a four-hour period after spotting. Further, within a ten-hour period after spotting, CFU in a culture of Ralstonia solanacearum, a bacterium with a generation time of around 2 h, can be estimated. The CFU number determined by micro-colonies observed for 106-fold dilutions or lower is similar to that obtained by the dilution plating method for 107-fold dilutions or lower. Micro-colony numbers observed in the early hours of growth (2 h in case of E. coli and 8 h in case of R. solanacearum) were found to remain consistent at later hours (4 h in case of E. coli and 10 h in case of R. solanacearum), where the visibility of the colonies was better due to a noticeable increase in the size of the colonies. This suggested that micro-colonies observed in the early hours indeed represent the bacterial number in the culture. Practical applications to this counting method were employed in studying the rifampicin-resistant mutation rate as well as performing a fluctuation test in E. coli. The spotting method described here to enumerate bacterial CFU results in reduction of labour, time and resources.


Assuntos
Bactérias , Escherichia coli , Contagem de Colônia Microbiana , Células-Tronco
8.
Int J Biol Macromol ; 237: 124206, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990413

RESUMO

A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes to stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with controlled releasing ability of the encapsulated drug.


Assuntos
Quitosana , Amido , Quitosana/química , Preparações de Ação Retardada/química , Hidrogéis/química , Polissacarídeos/química , Liberação Controlada de Fármacos , Excipientes , Concentração de Íons de Hidrogênio
9.
Appl Biochem Biotechnol ; 195(7): 4347-4367, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36689157

RESUMO

The economic viability of algal biodiesel can be improved by enhancing the microalgal lipid accumulation and using agricultural waste as a cheap and sustainable source of catalysts. In the current study, the effect of various nitrogen concentrations on the growth and lipid of Chlorella homosphaera were investigated. Furthermore, two-step catalytic conversion was applied to convert the oil of C. homosphaera with high free fatty acids (FFA) to biodiesel using waste radish leaves as a source of a heterogeneous base catalyst. The result revealed that the maximum lipid productivity of 25.0 mg L-1 day-1 and lipid content of 30.83% were obtained under nitrogen-depleted and limited nitrogen conditions, respectively. The FFA was reduced from 18.79 to 0.76%, and the acid value was decreased from 37.4 to 1.52 mg KOH g-1 using a 15:1 methanol to oil molar ratio (MTOR), 1.5 wt.% H2SO4, at 60 °C for 150 min. Under the optimized conditions, i.e., MTOR of 10:1, 3 wt.% of catalyst ratio for 120 min at 60 °C, the highest oil conversion of 96.61% was obtained. The physicochemical properties of the produced biodiesel were in the range of the standard specification norms for biodiesel. Hence, the proposed two-step catalytic conversion using calcined radish leaves as a heterogeneous catalyst has thus exhibited good potential for biodiesel production using algal oil with high FFA.


Assuntos
Chlorella , Raphanus , Biocombustíveis , Esterificação , Óleos de Plantas/química , Ácidos Graxos não Esterificados/química , Catálise , Serina-Treonina Quinases TOR
10.
Appl Biochem Biotechnol ; 195(5): 3257-3294, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36580260

RESUMO

Ethnomedicinal plants are a rich reservoir of active compounds with potent pharmacological properties. Therefore, plants could serve as a source for the discovery of active antimicrobial and antioxidant agents and are focused because of their low toxicity, economic viability, easy availability, etc. In this regard, phytochemical analyses, viz. ß-carotene, total sugar, reducing sugar, vitamin C, total carotenoids, protein, total phenolic content (TPC), and total flavonoid content (TFC) of 20 ethnomedicinal plants of North East India (NEI) were evaluated in this study. The antibacterial activity against human pathogens and antioxidant potential of plant extracts was also demonstrated. The minimum inhibitory concentration (MIC80), minimum bactericidal concentration (MBC), and total antibacterial activity (TAA) of the active extracts were evaluated against Pseudomonas aeruginosa and Chromobacterium violaceum. The active extracts were also examined for antibiofilm as well as anti-pyocyanin activities against P. aeruginosa and anti-QS activity against C. violaceum at sub-MICs. The study demonstrated variable concentration of phytochemicals of the extracts, viz. ß-carotene (0.29-8.91 mg g-1), total sugar (2.92-30.6 mM), reducing sugar (0.44-14.5 mM), vitamin C (8.41-31.3 mg g-1), total carotenoids (14.9-267.0 mg g-1), protein (5.65-283 mg g-1), TPC (5.32-31.0 mg GAE/g DW), and TFC (1.74-68.2 mg QE/g DW). The plant extracts also exhibited potent antioxidant and antibacterial activities against both Gram-positive and Gram-negative bacteria. Some of the extracts also demonstrated significant biofilm inhibition and eradication, anti-pyocyanin, and anti-QS activities at sub-MICs. The selected ethnomedicinal plants are rich in phytochemicals and demonstrated potent antioxidant, antibacterial, and antibiofilm activities, thus could serve as the important source of novel antioxidant and antimicrobial agents.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/análise , beta Caroteno , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/química , Plantas , Anti-Infecciosos/farmacologia , Flavonoides/farmacologia , Flavonoides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Fenóis/farmacologia , Biofilmes , Ácido Ascórbico , Açúcares , Índia
11.
Chemosphere ; 314: 137625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572360

RESUMO

This study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil. At the same time, an alkaline solution prepared from the ash was used for delignification and recovery of lignin from bamboo leaves by the hydrothermal reaction. Techniques like Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), and Energy dispersive X-ray (EDX) were applied to characterized the catalyst. The alkaline solution was analyzed with Atomic absorption spectroscopy (AAS). The Response surface methodology (RSM) technique was considered for the optimization of different parameters in the transesterification and hydrothermal reaction. Under the optimized condition, waste cooking oil (WCO) to Fatty acid methyl ester (FAME) conversion was 97.56 ± 0.11%, and lignin recovery was 43.20 ± 0.45%. While at the best operating pyrolysis temperature, the liquid fraction yield from the banana pseudostem (500 °C) was 38.10 ± 0.31 wt%. This integrated study approach encourages the inexpensive, sustainable, and environment-friendly pathway for synthesizing catalysts and preparing a highly alkaline solution for the valorization of biowaste into biofuel and biochemicals.


Assuntos
Biocombustíveis , Musa , Lignina , Esterificação , Catálise , Folhas de Planta , Óleos de Plantas/química
12.
Int J Biol Macromol ; 228: 68-77, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566806

RESUMO

Gelatin, being a naturally derived biomacromolecule shows good biocompatibility and biodegradability and hence turn out to be a potential biomaterial in synthesizing adhesive hydrogel. However, to achieve significant adhesive strength under wet condition and good mechanical properties, gelatin is functionalised with dopamine and acrylic acid. Here, inspired from nature, we have developed a gelatin based adhesive hydrogel for wet surfaces by incorporating dopamine into gelatin-poly(acrylic acid) chain. The synthesized hydrogel demonstrate good mechanical strength, high stretchability, reversibility, self-healing and dynamic adhesive behaviour along with long term reusability. The adhesive strength of the synthesized hydrogel to tissue surface was found to be 6.5 KPa when applied under submerged condition. Moreover, the swelling behaviour of the hydrogel reveals that hydrogel have limited swellability thereby retaining adhesive property under fully swollen state. Haemolysis results reveals the biocompatible nature of the hydrogel. Thus this hydrogel emerge to be a promising bioadhesive for application in various fields mostly in biomedical devices.


Assuntos
Bivalves , Hidrogéis , Animais , Adesivos , Gelatina , Dopamina , Alimentos Marinhos
13.
Microbiol Res ; 264: 127173, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037563

RESUMO

Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to conventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement classical antibiotic strategy.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes , Descoberta de Drogas , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Fatores de Virulência
14.
Front Plant Sci ; 13: 831589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677250

RESUMO

The paper and pulp industry (PPI) is one of the largest industries that contribute to the growing economy of the world. While wood remains the primary raw material of the PPIs, the demand for paper has also grown alongside the expanding global population, leading to deforestation and ecological imbalance. Wood-based paper production is associated with enormous utilization of water resources and the release of different wastes and untreated sludge that degrades the quality of the environment and makes it unsafe for living creatures. In line with this, the indigenous handmade paper making from the bark of Daphne papyracea, Wall. ex G. Don by the Monpa tribe of Arunachal Pradesh, India is considered as a potential alternative to non-wood fiber. This study discusses the species distribution modeling of D. papyracea, community-based production of the paper, and glycome profiling of the paper by plant cell wall glycan-directed monoclonal antibodies. The algorithms used for ecological and geographical modeling indicated the maximum predictive distribution of the plant toward the western parts of Arunachal Pradesh. It was also found that the suitable distribution of D. papyracea was largely affected by the precipitation and temperature variables. Plant cell walls are primarily made up of cellulose, hemicellulose, lignin, pectin, and glycoproteins. Non-cellulosic cell wall glycans contribute significantly to various physical properties such as density, crystallinity, and tensile strength of plant cell walls. Therefore, a detailed analysis of non-cellulosic cell wall glycan through glycome profiling and glycosyl residue composition analysis is important for the polymeric composition and commercial processing of D. papyracea paper. ELISA-based glycome profiling results demonstrated that major classes of cell wall glycans such as xylan, arabinogalactans, and rhamnogalacturonan-I were present on D. papyracea paper. The presence of these polymers in the Himalayan Buddhist handmade paper of Arunachal Pradesh is correlated with its high tensile strength. The results of this study imply that non-cellulosic cell wall glycans are required for the production of high-quality paper. To summarize, immediate action is required to strengthen the centuries-old practice of handmade paper, which can be achieved through education, workshops, technical know-how, and effective marketing aid to entrepreneurs.

15.
Analyst ; 147(12): 2859-2869, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35638294

RESUMO

Microscopes, bright-field (BF) and fluorescence microscopes, in particular, are ubiquitous for clinical diagnostics, cellular and microbiological investigations and in research laboratories. However, the size, cost, fragility and need for skilled personnel to operate these tools restrict their use in resource-limited settings. As an alternative platform, herein, we report a flexible multimodal imaging system that operates in BF and fluorescence modes using a smartphone. Our device utilizes the inbuilt primary camera of phones, and with the aid of easily available optical components, the designed platform is transformed into a high-throughput microscopic device that performs on par with that of a laboratory-grade microscope. The designed platform operates at three different optical magnifications and yields a lateral resolution of 1.21 µm over an acceptable field-of-view (FoV) of diameter ∼4530 µm. The versatility of the device has been demonstrated through imaging of standard microbeads and human blood samples both in BF and fluorescence modes of imaging. Furthermore, the designed imaging platform is equipped with an on-board cell recognition feature which has been obtained through developing a smartphone application for automatic cell counting with high precision.


Assuntos
Smartphone , Humanos , Microscopia de Fluorescência/métodos
16.
Chemosphere ; 300: 134497, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398470

RESUMO

The green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens. Coating of cotton fabrics with Cc-AgNPs and their efficacy against skin infection causing organisms was also evaluated. Furthermore, antioxidant activity, growth assay and time kill assay of Cc-AgNPs were also performed in the study. The biosynthesized Cc-AgNPs were characterized by UV-visible spectrometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The spectroscopic and microscopic analysis demonstrated biosynthesis of face-centered cubic (fcc) crystalline spherical Cc-AgNPs with an average particle size of 10.65 ± 0.1 nm. Optimized peak synthesis of Cc-AgNPs was reported at pH7, 55 °C, 4 mM silver nitrate, and 5:45 (plant extract: silver nitrate). Cc-AgNPs exhibited potent antioxidant effect and antibacterial activity against both Gram-positive and Gram-negative bacteria. The lowest MIC (15 µg/ml) and MBC (25 µg/ml) values were reported against S. typhimurium. The Cc-AgNPs coated fabrics demonstrated potent antibacterial activity against tested strains. This application could be helpful in wound healing management. Furthermore, the hemolytic analysis demonstrated that Cc-AgNPs exhibit non-toxic nature against Red Blood Cells (RBCs) at the tested concentrations. In conclusion, the investigation demonstrated a fast, stable, and eco-friendly approach to the biosynthesis of Cc-AgNPs along with their antibacterial and antioxidant properties.


Assuntos
Cuphea , Nanopartículas Metálicas , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Int J Biol Macromol ; 201: 298-307, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999043

RESUMO

An integrated treatment coupling alkali, steam explosion and ammonia/chlorine-free bleaching with sequential mild acid pretreatment were performed to isolate and characterize cellulose from banana agrowastes followed by optimized enzymatic hydrolysis to glucose. The cellulose yield, compositional, microstructural, and morphological analysis initially obtained from three post-harvest banana agrowastes (peel, pseudostem, and peduncle) were surveyed. Isolation parameters for banana peduncle agrowastes, the most efficient precursor, were reconfigured for acid hydrolysis by applying an orthogonal L9 array of Taguchi design. Effects of solution-to-pulp ratio, acid concentration, temperature, and reaction time on physicochemical parameters were assessed resulting in ~81% cellulose recovery. Subsequently, cellulase driven enzymatic conversion to glucose was modelled using response surface methodology (RSM), where the mutual influences of incubation time, enzyme concentration, substrate concentration, and surfactant concentration were investigated. Artificial Neural Network (ANN) modelling further improved upon RSM optimizations ensuing ~97% optimized glucose yield, verified experimentally.


Assuntos
Celulase , Musa , Celulose/química , Hidrólise , Musa/química , Vapor
18.
PLoS One ; 16(11): e0258645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780495

RESUMO

All approved coronavirus disease 2019 (COVID-19) vaccines in current use are safe, effective, and reduce the risk of severe illness. Although data on the immunological presentation of patients with COVID-19 is limited, increasing experimental evidence supports the significant contribution of B and T cells towards the resolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite the availability of several COVID-19 vaccines with high efficacy, more effective vaccines are still needed to protect against the new variants of SARS-CoV-2. Employing a comprehensive immunoinformatic prediction algorithm and leveraging the genetic closeness with SARS-CoV, we have predicted potential immune epitopes in the structural proteins of SARS-CoV-2. The S and N proteins of SARS-CoV-2 and SARS-CoVs are main targets of antibody detection and have motivated us to design four multi-epitope vaccines which were based on our predicted B- and T-cell epitopes of SARS-CoV-2 structural proteins. The cardinal epitopes selected for the vaccine constructs are predicted to possess antigenic, non-allergenic, and cytokine-inducing properties. Additionally, some of the predicted epitopes have been experimentally validated in published papers. Furthermore, we used the C-ImmSim server to predict effective immune responses induced by the epitope-based vaccines. Taken together, the immune epitopes predicted in this study provide a platform for future experimental validations which may facilitate the development of effective vaccine candidates and epitope-based serological diagnostic assays.


Assuntos
Biologia Computacional , Mapeamento de Epitopos , SARS-CoV-2/imunologia , Proteínas Estruturais Virais/imunologia , Sequência de Aminoácidos , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Bases de Dados como Assunto , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Reprodutibilidade dos Testes , Proteínas Estruturais Virais/química
19.
Braz J Microbiol ; 52(4): 1701-1718, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34558029

RESUMO

The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.


Assuntos
Antibacterianos , Fenômenos Fisiológicos Bacterianos , Biofilmes , Resistência Microbiana a Medicamentos , Percepção de Quorum , Antibacterianos/farmacologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Percepção de Quorum/efeitos dos fármacos
20.
J Basic Microbiol ; 61(5): 380-395, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33615511

RESUMO

Pathogenic microorganisms have adapted different strategies during the course of time to invade host defense mechanisms and overcome the effect of potent antibiotics. The formation of biofilm on both biotic and abiotic surfaces by microorganisms is one such strategy to resist and survive even in presence of antibiotics and other adverse environmental conditions. Biofilm is a safe home of microorganisms embedded within self-produced extracellular polymeric substances comprising of polysaccharides, extracellular proteins, nucleic acid, and water. It is because of this adaptation strategy that pathogenic microorganisms are taking a heavy toll on the health and life of organisms. In this review, we discuss the colonization of pathogenic microorganisms on tissues and medically implanted devices in human beings. We also focus on food spoilage, disease outbreaks, biofilm-associated deaths, burden on economy, and other major concerns of biofilm-forming pathogenic microorganisms in food industries like dairy, poultry, ready-to-eat food, meat, and aquaculture.


Assuntos
Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Indústria Alimentícia/economia , Animais , Aquicultura , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/microbiologia , Infecções Bacterianas/mortalidade , Indústria Alimentícia/métodos , Microbiologia de Alimentos , Humanos , Carne/microbiologia , Aves Domésticas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...