Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; : PDIS01240193RE, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38506911

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is one of the most devastating soilborne diseases of lettuce (Lactuca sativa L.). There are three races of V. dahliae, and each race has been characterized by markers representing race-specific effectors. Race 1 is differentiated by the presence of the functional secretory Ave1 effector. Similarly, races 2 and 3 are differentiated by effectors VdR2e and VdR3e, respectively. Although the presence of race 1 in coastal California was well established, the presence of effector-based races 2 and 3 was uncertain. This study therefore focused on characterizing 727 isolates collected from 142 ranches of symptomatic lettuce and other crops from coastal California. Based on this evaluation, 523 isolates were designated as race 1, 20 isolates as race 2, 23 isolates as race 3, and 17 as race undefined. Isolates representing other Verticillium species totaled 110, and 34 were non-Verticillium fungal species. Because the use of resistant cultivars is a key strategy to manage this disease, we evaluated 48 lettuce germplasm lines and 1 endive (Cichorium endivia L.) line, comprising commercial cultivars and breeding lines, including the race 1-resistant heirloom cultivar La Brillante and the susceptible cultivar Salinas as controls. Resistance against races 1, 2, and 3 along with VdLs17, a virulent isolate of V. dahliae from lettuce that is currently not assigned to a race, was evaluated in replicated greenhouse experiments. Two crisphead lettuce lines, HL28 and HL29, exhibited resistance against race 1 and a partial resistance against race 2, whereas all other lines were highly susceptible to races 1 and 2 and VdLs17. The majority of lines exhibited higher resistance to race 3 relative to the other two races. This study documents the current distribution of the different races in coastal California. In addition, the sources of resistance currently being developed should be effective or partially effective against these races for targeted deployment as soon as they are available.

2.
Appl Environ Microbiol ; 88(22): e0138522, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342142

RESUMO

Transcription factors (TFs) bind to the promoters of target genes to regulate gene expression in response to different stimuli. The functions and regulatory mechanisms of transcription factors (TFs) in Verticillium dahliae are, however, still largely unclear. This study showed that a C2H2-type zinc finger TF, VdCf2 (V. dahliae chorion transcription factor 2), plays key roles in V. dahliae growth, melanin production, and virulence. Transcriptome sequencing analysis showed that VdCf2 was involved in the regulation of expression of genes encoding secreted proteins, pathogen-host interaction (PHI) homologs, TFs, and G protein-coupled receptors (GPCRs). Furthermore, VdCf2 positively regulated the expression of VdPevD1 (VDAG_02735), a previously reported virulence factor. VdCf2 thus regulates the expression of several pathogenicity-related genes that also contribute to virulence in V. dahliae. VdCf2 also inhibited the transcription of the Vd276-280 gene cluster and interacted with two members encoding proteins (VDAG_07276 and VDAG_07278) in the gene cluster. IMPORTANCE Verticillium dahliae is an important soilborne phytopathogen which can ruinously attack numerous host plants and cause significant economic losses. Transcription factors (TFs) were reported to be involved in various biological processes, such as hyphal growth and virulence of pathogenic fungi. However, the functions and regulatory mechanisms of TFs in V. dahliae remain largely unclear. In this study, we identified a new transcription factor, VdCf2 (V. dahliae chorion transcription factor 2), based on previous transcriptome data, which participates in growth, melanin production, and virulence of V. dahliae. We provide evidence that VdCf2 regulates the expression of the pathogenicity-related gene VdPevD1 (VDAG_02735) and Vd276-280 gene cluster. VdCf2 also interacts with VDAG_07276 and VDAG_07278 in this gene cluster based on a yeast two-hybrid and bimolecular fluorescence complementation assay. These results revealed the regulatory mechanisms of a pivotal pathogenicity-related transcription factor, VdCf2 in V. dahliae.


Assuntos
Verticillium , Virulência/genética , Verticillium/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo Secundário , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Família Multigênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia
3.
Front Microbiol ; 13: 935193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847105

RESUMO

Plant viruses cause enormous losses in agricultural production accounting for about 47% of the total overall crop losses caused by plant pathogens. More than 50% of the emerging plant diseases are reported to be caused by viruses, which are inevitable or unmanageable. Therefore, it is essential to devise novel and effective management strategies to combat the losses caused by the plant virus in economically important crops. Nanotechnology presents a new tendency against the increasing challenges in the diagnosis and management of plant viruses as well as plant health. The application of nanotechnology in plant virology, known as nanophytovirology, includes disease diagnostics, drug delivery, genetic transformation, therapeutants, plant defense induction, and bio-stimulation; however, it is still in the nascent stage. The unique physicochemical properties of particles in the nanoscale allow greater interaction and it may knock out the virus particles. Thus, it opens up a novel arena for the management of plant viral diseases. The main objective of this review is to focus on the mounting collection of tools and techniques involved in the viral disease diagnosis and management and to elucidate their mode of action along with toxicological concerns.

5.
Plant Dis ; 105(12): 3809-3815, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34253041

RESUMO

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most important diseases of melon. Although there are several pathogenic races of P. xanthii, race 1 is the predominant race in South Carolina and in other parts of the United States. We used a densely genotyped recombinant inbred line melon population for traditional quantitative trait loci (QTL) mapping, to identify two major (qPx1-5 and qPx1-12) and two minor (qPx1-4 and qPx1-10) QTLs (named according to race - chromosome number) associated with resistance to P. xanthii race 1. QTL mapping of disease severity in multiple tissues (hypocotyl, cotyledons, true leaves, and stems) identified the same genetic basis of resistance in all tissue types. Whole-genome resequencing of the parents was used for marker development across the major QTLs and functional annotation of single nucleotide polymorphisms (SNPs) for candidate gene analysis. Kompetitive allele-specific PCR (KASP) markers were tightly linked to the QTL peaks of qPx1-5 (pm1-5_25329892, pm1-5_25461503 and pm1-5_25625375) and qPx1-12 (pm1-12_22848920 and pm1-12_22904659) in the population and will enable efficient marker-assisted introgression of powdery mildew resistance into improved germplasm. Candidate genes were identified in both major QTL intervals that encode putative R genes with missense mutations between the parents. The candidate genes provide targets for future breeding efforts and a fundamental examination of resistance to powdery mildew in melon.


Assuntos
Cucurbitaceae , Resistência à Doença/genética , Doenças das Plantas , Locos de Características Quantitativas , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Cucurbitaceae/genética , Cucurbitaceae/microbiologia , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
Evol Appl ; 13(1): 31-47, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892942

RESUMO

American chestnut was once a foundation species of eastern North American forests, but was rendered functionally extinct in the early 20th century by an exotic fungal blight (Cryphonectria parasitica). Over the past 30 years, the American Chestnut Foundation (TACF) has pursued backcross breeding to generate hybrids that combine the timber-type form of American chestnut with the blight resistance of Chinese chestnut based on a hypothesis of major gene resistance. To accelerate selection within two backcross populations that descended from two Chinese chestnuts, we developed genomic prediction models for five presence/absence blight phenotypes of 1,230 BC3F2 selection candidates and average canker severity of their BC3F3 progeny. We also genotyped pure Chinese and American chestnut reference panels to estimate the proportion of BC3F2 genomes inherited from parent species. We found that genomic prediction from a method that assumes an infinitesimal model of inheritance (HBLUP) has similar accuracy to a method that tends to perform well for traits controlled by major genes (Bayes C). Furthermore, the proportion of BC3F2 trees' genomes inherited from American chestnut was negatively correlated with the blight resistance of these trees and their progeny. On average, selected BC3F2 trees inherited 83% of their genome from American chestnut and have blight resistance that is intermediate between F1 hybrids and American chestnut. Results suggest polygenic inheritance of blight resistance. The blight resistance of restoration populations will be enhanced through recurrent selection, by advancing additional sources of resistance through fewer backcross generations, and by potentially by breeding with transgenic blight-tolerant trees.

7.
Plant J ; 80(4): 642-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231822

RESUMO

Inositol pyrophosphates are unique cellular signaling molecules with recently discovered roles in energy sensing and metabolism. Studies in eukaryotes have revealed that these compounds have a rapid turnover, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of investigation in plants even though seeds produce large amounts of their precursor, myo-inositol hexakisphosphate (InsP6 ). Here, we report that Arabidopsis and maize InsP6 transporter mutants have elevated levels of inositol pyrophosphates in their seed, providing unequivocal identification of their presence in plant tissues. We also show that plant seeds store a little over 1% of their inositol phosphate pool as InsP7 and InsP8 . Many tissues, including, seed, seedlings, roots and leaves accumulate InsP7 and InsP8 , thus synthesis is not confined to tissues with high InsP6 . We have identified two highly similar Arabidopsis genes, AtVip1 and AtVip2, which are orthologous to the yeast and mammalian VIP kinases. Both AtVip1 and AtVip2 encode proteins capable of restoring InsP7 synthesis in yeast mutants, thus AtVip1 and AtVip2 can function as bonafide InsP6 kinases. AtVip1 and AtVip2 are differentially expressed in plant tissues, suggesting non-redundant or non-overlapping functions in plants. These results contribute to our knowledge of inositol phosphate metabolism and will lay a foundation for understanding the role of InsP7 and InsP8 in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Teste de Complementação Genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores Genéricos de Transcrição/genética , Leveduras/genética , Zea mays/genética , Zea mays/metabolismo
8.
Plant Signal Behav ; 6(11): 1871-4, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22067992

RESUMO

Glycerol-3-phosphate (G3P), a conserved three-carbon sugar, is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis. G3P can be derived via the glycerol kinase-mediated phosphorylation of glycerol or G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate. Previously, we showed G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Inoculation of Arabidopsis with C. higginsianum correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in GLY1 encoded G3Pdh accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Recently, we showed that G3P is also a potent inducer of systemic acquired resistance (SAR) in plants. SAR is initiated after a localized infection and confers whole-plant immunity to secondary infections. SAR involves generation of a signal at the site of primary infection, which travels throughout the plants and alerts the un-infected distal portions of the plant against secondary infections. Plants unable to synthesize G3P are defective in SAR and exogenous G3P complements this defect. Exogenous G3P also induces SAR in the absence of a primary pathogen. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues. Together, these observations suggest that the cooperative interaction of DIR1 and G3P mediates the induction of SAR in plants.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Transporte/imunologia , Glicerolfosfato Desidrogenase/imunologia , Glicerofosfatos/biossíntese , Imunidade Vegetal , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Colletotrichum , Resistência à Doença , Proteínas de Ligação a Ácido Graxo , Regulação da Expressão Gênica de Plantas , Glicerolfosfato Desidrogenase/genética , Glicerofosfatos/imunologia
9.
BMC Genomics ; 10: 415, 2009 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-19732460

RESUMO

BACKGROUND: The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea. RESULTS: We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a CaUnigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. CONCLUSION: Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of CaEST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt.


Assuntos
Cicer/genética , Hibridização Genômica Comparativa , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Cicer/imunologia , Cicer/microbiologia , Análise por Conglomerados , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Bases de Dados Genéticas , Fusarium , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Genótipo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
10.
PLoS Genet ; 5(7): e1000545, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578402

RESUMO

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Proteínas de Ligação a DNA/imunologia , Imunidade Inata , Doenças das Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carmovirus/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Doenças das Plantas/virologia
11.
J Biosci ; 31(5): 607-16, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17301499

RESUMO

Induction of defense response against Karnal bunt (KB)by suppressing the pathogenesis was observed upon exogenous application of jasmonic acid (JA)as evident from decrease in the coefficient of infection and overall response value in both susceptible and resistant varieties of wheat. The ultra-structural changes during disease progression showed the signs of programmed cell death (PCD). However, JA strengthened the defense barrier by enhancing the lignifications of cell walls as observed in spikes of both varieties by histochemical analysis. Compared to the plants inoculated with pathogen alone, plants of resistant line (RJP) first treated with JA followed by inoculation with pathogen showed more lignifications and extracellular deposition of other metabolites on cells, which is supposed to prevent mycelial invasions. Contrary to this, susceptible (SJP)lines also showed lignifications but the invasion was more compared to resistant line. Induction of protease activity was higher in resistant variety than its corresponding susceptible variety. The protease activity induced during the colonization of the pathogen and its proliferation inside the host system gets inhibited by JA treatment as demonstrated by the quantitative and in-gel protease assay. The results indicate the role of JA signalling in inhibiting the proteases due to expression of certain protease inhibitor genes. SDS-PAGE analysis shows differential gene expression through induction and/or suppression of different proteins in wheat spikes of resistant and susceptible varieties under the influence of JA. Thus, exogenously applied JA provides the conditioning effect prior to the challenge of infection and induces defense against KB probably by maintaining a critical balance between proteases and protease inhibitors and/or coordinating induction of different families of new proteins.


Assuntos
Ciclopentanos/farmacologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Triticum/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Oxilipinas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/genética , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/microbiologia , Transdução de Sinais , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...