Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(97): 14370-14386, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37965696

RESUMO

meta-Fluorophores (MFs) are unique ultra-light (in terms of molecular weight (MW)) fluorophores exhibiting luminescence with a wide colour gamut ranging from blue to the NIR. Single benzenic MFs are easy to synthesize, are quite bright (with photoluminescence quantum yield (PLQY) as high as 63%) and exhibit very large Stokes shift (as high as 260 nm (8965 cm-1)), with large solvatochromic shift (as high as 175 nm), and very long excited-state-lifetime (as high as 26 ns) for such ultra-light fluorophores. An emission maximum of ≥600 nm has been achieved with an MF in a polar medium having a MW of only 177 g mol-1 and in a nonpolar medium having MW of only 255 g mol-1; therefore, a large-sized π-conjugated para-fluorophore is no longer a prerequisite for red/NIR emission. Structurally varied MFs pave the way for creating an ocean of opportunities and are thus promising for replacing para-fluorophores for different applications, ranging from bioimaging to LEDs.

2.
Indian J Orthop ; 57(9): 1359-1375, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37609028

RESUMO

Objective: The current systematic and meta-static review aimed to analyze the correlation between isolated gastrocnemius contracture and plantar fasciitis and the effectiveness of gastroc recession surgery in the treatment of plantar fasciitis. Methodology: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to conduct this meta-analysis. A literature search was carried out on the following databases, including Google Scholar, PubMed, EMBASE, and the Cochrane databases with the appropriate medical subject headings (MeSH) to identify the eligible articles. Results: A total of 13 studies were included in this meta-analysis. In this study, there is a significant difference in chronic plantar fasciitis outcome when comparing experimental and control (RR: 0.02; 95% CI: 0.01 to 0.05; P < 0.001; I2 = 29%). There is a significant difference in pain scale outcome when comparing pre-treatment and post-treatment (RR: 3.25; 95% CI 1.44 to 7.32; P = 0.004 < 0.01; I2 = 0%). A significant difference in VAS scale outcome when comparing pre-treatment and post-treatment (RR: 2.58; 95% CI 1.52 to 4.38; P = 0.0004 < 0.01; I2 = 0%). Conclusion: In conclusion, the current systematic review and meta-analysis of gastrocnemius recession and proximal medial gastrocnemius release and other treatment measures for plantar fasciitis suggests that the improvement of ankle dorsiflexion, reduction in pain, and patient satisfaction are almost similar in all the treatment measures. Among the five treatment measures, gastrocnemius recession remains the best, followed by proximal medial gastrocnemius release.

3.
Indian J Orthop ; 57(6): 800-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214359

RESUMO

Background: Calcaneal fractures are serious injuries that mainly affect young, active people. As a result, these fractures may cause long-term impairment and have a major socioeconomic impact. The current updated systematic review and meta-analysis were conducted to evaluate the functional outcomes, re-operative risk, and complications associated with the treatment of displaced intra-articular calcaneal. Methodology: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to conduct this meta-analysis. The literature search was carried out using PubMed, Cochrane, MEDLINE, Google Scholar, and the EMBASE databases with the appropriate keywords. Results: A total of 13 studies were included in this review. The follow-up months were diverse, ranging between 12 and 65 months in sinus tarsi approach (STA) and 12 to 76 months in extended lateral approach (ELA) methods. Time to surgery was shorter for the STA when compared to ELA (MD: 3.48; 95% CI 2.43 to 4.53; p < 0.00001). No significant difference was observed in functional outcomes between STA and ELA (MD: 0.34; 95% CI: -0.37 to 1.04; p = 0.35 > 0.05; I2 = 88%). In comparison to the ELA, the STA has significantly less wound healing complications (RR: 0.20; 95% CI 0.11 to 0.36; p 0.00001; I2 = 0%). Conclusion: In conclusion, the STA technique in treating calcaneal fractures was significantly safer and more effective when compared to the ELA methods. The STA method of treatment was found to have a lower risk of complications and an infection rate, as well as a shorter operating and recovery time.

4.
Nanoscale ; 15(15): 6947-6953, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36974486

RESUMO

Zn-alloyed CsPb(Cl/Br)3 perovskite nanocrystals (PNCs) have been synthesized and used as a model system for Mn doping in order to understand the effect of Mn doping on exciton dynamics. While keeping the PL emission maximum and PLQY of both PNC samples nearly the same, the radiative decay rate of the host band decreases ∼6.5 times and the non-radiative decay rate increases ∼2.5 times upon Mn doping. Unlike reports in the literature in which the dopant emission decreases to near-zero, in the present case we observe ∼5.5-fold enhancement of the integrated PL intensity of the dopant emission when the temperature decreases from 290 K to 190 K. Interestingly, the FWHM of the host PL emission band increases with a decrease in temperature from 290 K to 190 K. A higher value of phonon energy in PNC2 (58 ± 2 meV) in comparison to CsPbBr3 has been noted. The low magnitude of the Huang-Rhys factor indicates less electron phonon coupling for the Mn-doped PNC system. Temperature-dependent dopant PL decay exhibits biexponential decay behaviour with time constants τ1 = 450-540 µs and τ2 = 1.1-1.2 ms. With a decrease in temperature from 290 K to 190 K, the amplitude of the faster component decreases from 80% to 60%; concomitantly, the amplitude of the slower component increases from 20% to 40%. Ultrasensitive single-particle spectroscopic analyses reveal that, although the probability density distributions (PDDs) of the durations of both ON and OFF events of PNC1 could be fitted with a truncated inverse power law (TIPL), however, for PNC2, both PDDs could be fitted with an inverse power law (IPL). A comparatively lower value of the power law exponent mON indicates a higher probability of longer ON events for PNC1 than for PNC2. Truncation in the PDDs of both ON and OFF events has been observed for PNC1, but not in the PDDs of either ON or OFF events for PNC2. The presence of shallow trap states is responsible for the truncation for PNC1, whereas the presence of deep dopant states does not allow truncation in the host PL emission of PNC2. All these observations clearly demonstrate that Mn doping transforms the host PL exciton dynamics for Zn-alloyed Mn-doped CsPb(Cl/Br)3 PNCs very significantly.

5.
J Phys Chem Lett ; 14(1): 260-266, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36595225

RESUMO

Intrinsic hole trapping as well as hole detrapping have not been observed for any quantum dot (QD) or perovskite nanocrystal (PNC) system. Moreover, amplitude variation of intrinsic hole trapping (or detrapping) has not been reported at all for any QD or PNC system. However, for a CuInS2-based core/alloy-shell (CAS) QD system, (a) both intrinsic hole trapping and detrapping have been observed and (b) very significant amplitude variations of hole trapping (∼16 to ∼42%) and hole detrapping (∼44 to 23%) have been observed. Unlike detrimental electron trapping, hole trapping has been shown to be beneficial, having a direct correlation toward increasing PLQY to 96%. Simultaneous electron and hole trapping has been shown to be quite beneficial for the CuInS2-based CAS QD system leading to the longest ON time (∼130 s) for which a nontoxic metal-based QD remains only in the ON-state without blinking.

6.
J Phys Chem Lett ; 13(10): 2404-2417, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35257586

RESUMO

The importance of alloy-shelling in optically robust Core/Alloy-Shell (CAS) QDs has been described from structural and energetic aspects. Unlike fluorescent dyes, both Core/Shell (CS) and CAS QDs exhibit excitation-energy-dependent photoluminescence quantum yield (PLQY). For both CdSe and InP CAS QDs (with metal- and nonmetal-based alloy-shelling, respectively), with increasing excitation energy, (a) the ultrafast rise-time or relaxation-time to the band-edge increases and (b) the magnitude of the normalized bleach signal decreases. Ultrasensitive single-particle spectroscopic investigation results showed that with decreasing excitation energy, (a) the fraction of ON events increases, (b) the ratio of exciton-detrapping rate/trapping rate increases, and (c) the extent of beneficial hole trapping increases. A relative decrease in PLQY with increasing excitation energy is much less pronounced in CAS QDs than in CS QDs. Unless trap states are removed completely especially in the higher-energy landscape, PLQY will remain inherently dependent on excitation energy for QDs in the vast energy landscape. When reporting the PLQY of QDs, the magnitude of the excitation energy must be mentioned.


Assuntos
Pontos Quânticos , Ligas , Luminescência , Fenômenos Físicos , Pontos Quânticos/química , Sulfetos/química
7.
Phys Chem Chem Phys ; 24(15): 8578-8590, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35355030

RESUMO

A "one-pot one-step" synthesis method of Core/Alloy Shell (CAS) quantum dots (QDs) offers the scope of large scale synthesis in a less time consuming, more economical, highly reproducible and high-throughput manner in comparison to "multi-pot multi-step" synthesis for Core/Shell (CS) QDs. Rapid initial nucleation, and smooth & uniform shell growth lead to the formation of a compositionally-gradient alloyed hetero-structure with very significantly reduced interfacial trap density in CAS QDs. Thus, interfacial strain gets reduced in a much smoother manner leading to enhanced confinement for the photo-generated charge carriers in CAS QDs. Convincing proof of alloy-shelling for a CAS QD has been provided from HRTEM images at the single particle level. The band gap could be tuned as a function of composition, temperature, reactivity difference of precursors, etc. and a high PLQY and improved photochemical stability could be achieved for a small sized CAS QD. From the ultrafast exciton dynamics in CdSe and InP CAS QDs, it has been shown that (a) the hot exciton thermalization/relaxation happens in <500 fs, (b) hot electron trapping dynamics occurs within a ∼1 ps time scale, (c) band edge exciton trapping occurs within a 10-25 ps timescale and (d) for CdSe CAS QDs the hot hole gets trapped in about 35 ps. From fast PL decay dynamics, it has been shown that the amplitude of the intermediate time constant can be correlated with the PLQY. A model has been provided to understand these ultrafast to fast exciton dynamical processes. At the ultrasensitive single particle level, unlike CS QDs, CdSe CAS QDs have been shown to exhibit (a) constancy of PLmax (i.e. no bluing) and (b) constancy of PL intensity (i.e. no bleaching) of the single CAS QDs for continuous irradiation for one hour under an air atmosphere. Thus, CAS QDs hold the promise of being a superior optical probe in comparison to CS QDs both at the ensemble and at the single particle level, leading to enhanced flexibility of the CAS QDs towards designing and developing next generation application devices.

8.
J Phys Chem B ; 126(7): 1551-1557, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35166544

RESUMO

The hydrophobicity of room-temperature ionic liquids (RTILs) has been shown to have a very significant effect on the optical and structural properties of and in RTILs. The average excited state lifetime of neat RTILs has been shown to be increasing with increasing hydrophobicity of the RTILs. By employing pico-nanosecond-based fluorescence anisotropy decay, the volume of the nanoaggregates in neat RTILs have been calculated. The volume of these nanoaggregates have been shown to be decreasing with increase in hydrophobicity of the RTILs. Thus, hydrophobicity has been shown to have an important role, i.e., hydrophobicity can be used as a handle to tune the properties of RTILs as designer solvents. Moreover, the excited-state lifetime of red-emitting fluorophores, i.e., whose fluorescence emission is not perturbed by the inherent emission of RTILs, has been shown to increase with the increasing hydrophobicity of the RTILs. Highly hydrophobic RTILs have been shown to exhibit positive deviation and highly hydrophilic RTIL has been shown to exhibit negative deviation from the linear correlation between average solvation time (τs) versus viscosity/temperature (η/T).


Assuntos
Líquidos Iônicos , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Solventes/química , Temperatura , Viscosidade
9.
J Phys Chem Lett ; 12(41): 10169-10174, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34643402

RESUMO

Optical robustness, uniformity, ergodicity, statistical aging, etc. dictate the applicability of nanocrystals. Based on a series of multimodal statistical analyses such as the Kolmogorov-Smirnov test, Lévy statistics, etc., we demonstrate that for CsPbBr3 perovskite nanocrystals (PNCs): (a) the extent of heterogeneity in the quality and associated physical processes is minimal; (b) the optical robustness is very high, and (c) indeed, a single PNC can depict optical behavior of its ensemble. In addition, toward prospective applications, an optically robust CsPbBr3 PNC exhibits (i) near-ergodicity and (ii) minimal statistical aging, which are extremely vital and complementary to its high defect tolerance.

10.
Nanoscale ; 13(6): 3654-3661, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538737

RESUMO

With an increasing bromide content in CsPb(Br/Cl)3 perovskite nanocrystals (PNCs), the steady state photoluminescence quantum yield value increases from 28% to 50% to 76%. Ultrafast transient absorption analyses reveal that the normalized band edge population increases more than two-fold on excitation at the band edge with increasing bromide content, and the hot exciton trapping time increases from 450 fs to 520 fs to 700 fs with increasing bromide content. Ultrasensitive single particle spectroscopic analyses reveal that the peak of the ON fraction distribution increases from 0.65 to 0.75 to 0.85 with increasing bromide content. More specifically, the percentage of PNCs with the ON fraction >75% increases four fold from 24% to 50% to 98% with increasing bromide content. Moreover, the ratio of the detrapping rate and trapping rate increases more than 25 fold with an increase in bromide content, signifying the excitons remaining in the trap state for a smaller time with increasing bromide content. In order to standardize the measurement and analyses, all these three PNCs have the same size and shape, and all the excitations have been made at the same energy above the band edge for all three PNCs and for both ultrafast transient absorption and ultrasensitive single particle measurements.

11.
J Phys Chem Lett ; 12(5): 1426-1431, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33522828

RESUMO

There is no literature report of simultaneously achieving near-unity PLQY (ensemble level) and highly suppressed blinking (ultrasensitive single-particle spectroscopy (SPS) level) in a toxic-metal-free QD. In this Letter we report accomplishing near-unity PLQY (96%) and highly suppressed blinking (>80% ON fraction) in a toxic-metal-free CuInS2/ZnSeS Core/Alloy-Shell (CAS) QD. In addition, (i) gigantic enhancement of PLQY (from 15% (Core) to 96% (CAS QD)), (ii) ultrahigh stability over 1 year without significant reduction of PLQY at the ensemble level, (iii) high magnitude (nearly 3 times) of electron detrapping/trapping rate, and (iv) very long ON duration (∼2 min) without blinking at the SPS level enable this ultrasmall (∼3.3 nm) CAS QD to be quite suitable for single-particle tracking/bioimaging. A model explaining all these excellent optical properties has been provided. This ultrabright CAS QD has been successfully utilized toward fabrication of low-cost microcontroller-based stable and bright yellow and white QD-LEDs.

12.
Angew Chem Int Ed Engl ; 59(45): 19878-19883, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32667123

RESUMO

Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.

13.
J Phys Chem Lett ; 11(5): 1702-1707, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32040316

RESUMO

Perovskite quantum dots (PQDs) are known to be defect-tolerant, possessing a clean band gap with optically inactive benign defect states. However, we show that there exist significant deep trap states beyond the conduction band minimum, although the extent of shallow trap states is observed to be minimal. The extent of deep trap states beyond the conduction band minimum seems to be significant in PQDs; however, the extent is less than that of even optically robust CdSe- and InP-based core/alloy-shell QDs. In-depth analyses based on ultrafast transient absorption and ultrasensitive single-particle spectroscopic investigations decode the underlying degree of charge carrier recombination in CsPbBr3 PQDs, which is quite important for energy applications.

14.
J Phys Chem Lett ; 10(15): 4330-4338, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294573

RESUMO

Suppressed blinking has been reported in large (diameter ∼14.1 nm) core/shell InP quantum dots (QDs) under reduced air environment. We report here suppressed blinking with approximately four times smaller (diameter ∼3.6 nm) core/alloy-shell/shell InP QDs under ambient air atmosphere. The ⟨ON fraction⟩ has been obtained to be 0.65. Approximately 26% of the single QDs exhibit ON fraction >80%. The smaller ON exponent (1.19) magnitude in comparison to the OFF exponent (1.45) indicates longer ON events are interrupted by smaller OFF events. ON event truncation time is ∼1.5 times that of the OFF event, signifying the detrapping rate is much higher than the trapping rate. Interestingly, the detrapping rate/trapping rate (single-particle level property) could be directly correlated to the photoluminescence quantum yield (ensemble level property). An additional exponential term required to fit the probability density distribution of the ON event duration could be correlated with hole trapping, leading to extended ON times (>60 s).

15.
Phys Chem Chem Phys ; 21(24): 13370-13373, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168554

RESUMO

The claim that the analysis regarding resonance energy transfer should have been made using different equations than those that we have used is negated based on the following points: (1) we are well aware of the equations the author has provided in his comment. The equation (eqn (3) mentioned below) that the author has written is undoubtedly too simple to describe the complex system delineated in our original paper. This particular equation is perhaps OK for simple dye (donor and acceptor) systems; however, such a simple equation is never enough for nanoparticle/quantum dot systems. (2) Another equation suggested by the author in his comment (eqn (2)) contains a parameter called donor concentration in excited state. We have categorically described in page 6-7 of our original paper why it is difficult to measure the donor concentration accurately even in the ground state. When the donor concentration can't be known accurately it can't be used in the suggested equation. (3) Donor-acceptor distance calculated by eqn (3)/Table 1 provided by the author deviates more than 100% from the distance that is physically feasible. Such kinds of problems are well documented in the literature. (4) One of the papers cited by the author in his comment and many other published papers clearly mention that in the case when all donor molecules/particles do not take part in the resonance energy transfer process or the stoichiometry of a donor-acceptor complex is not known or deviates strongly from 1 : 1, especially in quantum dots or any other nanomaterial system, it is not possible to extract accurate dynamical information related to RET from donor decay. Instead risetime of acceptor yields much more accurate information. Such situations do arise in our system as well.

16.
Nanoscale Adv ; 1(9): 3506-3513, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133552

RESUMO

Herein, the instantaneous synthesis of highly crystalline, uniform-sized (ca. 11.3 ± 0.1 nm), blue-to-green to yellow to red-emitting all-inorganic perovskite quantum dots (CsPbBr3 and mixed halide PQDs) was achieved at room temperature under an open-air atmosphere (no glove box) through halide exchange in the solution phase employing easily available, inexpensive non-metal-based halide sources such as HCl and HI. No complicated pre-treatment of the halide source was required. Moreover, these PQDs were stable for a few weeks under an open-air atmosphere. The PL emission spectra are quite narrow, and the PLQYs are quite high (80% for even Br/I mixed PQDs). At the single particle level, the 〈ON fraction〉 has been noted to vary from 75% to 85% for different PQDs, the m ON values are close to 1.0, and the m OFF values are >1.5. The latter indicates that long ON durations are more probable. The increase in the ON event truncation time (from 2.7 to 4.0 s) and the concomitant decrease in the OFF event truncation time (from 6.6 to 4.3 s) could be correlated with the increase in the PLQY (from 0.55 to 0.75). In addition, an interesting memory effect could be observed in both the ON and the OFF event durations.

17.
J Phys Chem Lett ; 9(17): 5092-5099, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122049

RESUMO

We report the synthesis and dynamical behavior of a carbon dot (CD) with near 100% photoluminescence quantum yield in water for a very large pH range (1-12). This CD exhibits a rotational correlational time of only ∼130 ps, signifying the whole CD is not exhibiting photoluminescence. Unlike most carbon-based nanoparticles (which act as a quencher of fluorescence), this CD could act as a donor, and the Förster model could account for the experimental observables for the resonance energy transfer (RET) experiment quite well. Based on two dynamical measurements, it could be shown that the fluorescing moiety is located inside the core of the CD. Importantly, for this CD, RET experiments could be performed with a very low concentration (500 nM) of the acceptor. This kind of electrostatics-driven RET at very low concentration is quite important in bioimaging. This ultrabright CD is nontoxic and useful for bioimaging in mesenchymal stem cells.

18.
Phys Chem Chem Phys ; 20(15): 10332-10344, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29610808

RESUMO

CdSe-based core/gradient alloy shell/shell semiconductor quantum dots (CGASS QDs) have been shown to be optically quite superior compared to core-shell QDs. However, very little is known about CGASS QDs at the single particle level. Photoluminescence blinking dynamics of four differently emitting (blue (λem = 510), green (λem = 532), orange (λem = 591), and red (λem = 619)) single CGASS QDs having average sizes <∼7 nm have been probed in our home-built total internal reflection fluorescence (TIRF) microscope. All four samples possess an average ON-fraction of 0.70-0.85, which hints towards nearly suppressed PL blinking in these gradiently alloyed systems. Suppression of blinking has been so far achieved with QDs having sizes greater than 10 nm and mostly emitting in the red region (λem > 600 nm). In this manuscript, we report nearly suppressed PL blinking behaviour of CGASS QDs with average sizes <∼7 nm and emitting in the entire range of the visible spectrum, i.e. from blue to green to orange to red. The probability density distribution of both ON- and OFF-event durations for all of these CGASS QDs could be fitted well with a modified inverse truncated power law with an additional exponential model equation. It has been found that unlike most of the literature reports, the power law exponent for OFF-event durations is greater than the power law exponent for ON-event durations for all four samples. This suggests that relatively large ON-event durations are interrupted by comparatively small OFF-event durations. This in turn is indicative of a suppressed non-radiative Auger recombination process for these CGASS systems. However, in these four different samples the ON-event truncation time varies inversely with the OFF-event truncation time, which hints that both the ON- and OFF-event truncation processes are dictated by some common factor. We have employed 2D joint probability distribution analysis to probe the correlation between the event durations and found that residual memory exists in both the ON- and OFF-event durations. Positively correlated successive ON-ON and OFF-OFF event durations and negatively correlated (anti-correlated) ON-OFF event durations perhaps suggest the involvement of more than one type of trapping process within the blinking framework. The timescale corresponding to the additional exponential term has been assigned to hole trapping for ON-event duration statistics. Similarly, for OFF-event duration statistics, this component suggests hole detrapping. We found that the average duration of the exponential process for the ON-event durations is an order of magnitude higher than that of the OFF-event durations. This indicates that the holes are trapped for a significantly long time. When electron trapping is followed by such a hole trapping, long ON-event durations result. We have observed long ON-event durations, as high as 50 s. The competing charge tunnelling model has been used to account for the observed blinking behaviour in these CGASS QDs. Quite interestingly, the PLQY of all of these differently emitting QDs (an ensemble level property) could be correlated with the truncation time (a property at the single particle level). A respective concomitant increase-decrease of ON-OFF event truncation times with increasing PLQY is also indicative of a varying degree of suppression of the Auger recombination processes in these four different CGASS QDs.

19.
Phys Chem Chem Phys ; 20(4): 2251-2259, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29303187

RESUMO

It has been shown recently that aggregated dyes are responsible for very high fluorescence in a carbon dot (CD). However, what is the location of the fluorescing moiety in CD? Is it inside the CD or attached to the CD's surface? In order to answer these intriguing questions regarding the location of the fluorescing moiety in a CD, we performed rotational anisotropy decay dynamics and resonance energy transfer (RET) dynamics. Rotational correlation time of ∼120 picoseconds nullifies the fact that the whole CD is fluorescing. Instead, we can say that the fluorescing moiety is either embedded inside the CD or attached to the surface of the CD or linked to the CD through covalent bonds. From the fluorescence anisotropy decay dynamics in solvents of different viscosities, we could show that the fluorescing moiety is not attached to the surface of the CD or for that matter, the fluorescing moiety is not in a rigid environment inside the CD. RET dynamical analysis has shown that the time for RET (from CD to acceptor Rh123) is about 5.4 ns and the RET dynamics are independent of the acceptor concentration. Using RET dynamics, we could prove that the fluorescing moiety is not outside the CD; rather, it is inside the CD, but not in a rigid environment. The geometric distance between the fluorescing moiety of the CD and the acceptor (Rh123) has been obtained to be 4.55 nm. Using Förster formulation, the distance between the fluorescing moiety inside the CD and the acceptor Rh123 has been calculated to be 4.24 nm. Thus, we could not only reveal the exact location of the fluorescing moiety in a CD, but we could also demonstrate that unlike for many other nanomaterials, Förster formulation could explain the experimental observables regarding RET involving CD reasonably well.

20.
Phys Chem Chem Phys ; 18(40): 28274-28280, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711558

RESUMO

The molecular origin of the photoluminescence of carbon dots (CDs) is not known. This restricts the design of CDs with desired optical properties. We have synthesized CDs starting from carbohydrates by employing a simple synthesis method. We were able to demonstrate that the CDs are composed of aggregated hydroxymethylfurfural (HMF) derivatives. The optical properties of these CDs are quite unique. These CDs exhibit an excitation-independent PL emission maximum in the orange-red region (λ ∼ 590 nm). These CDs also exhibit excitation as well as monitoring wavelength-independent single exponential PL decay. These observations indicate that only one type of chromophore (HMF derivative) is present within the CDs. Several HMF derivatives are aggregated within the CDs; therefore, the aggregated structure cause a large Stokes shift (∼150 nm). By several control experiments, we showed that the same aggregated chromophore unit (HMF derivative), and not the individual fluorophores, is the fluorescing unit. The emission maximum and the single exponential PL lifetime are independent of the polarity of the medium. The existence of a low-lying trap state could be reduced quite significantly. A model has been proposed to explain the interesting steady state and dynamical photoluminescence behaviour of the CDs. As the molecular origin of their photoluminescence is known, CDs with desired optical properties can be designed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...