Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1018940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504802

RESUMO

Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO2 (+H2) or HCO3 - as the sole C source. Estimation of total protein, ATP, utilization of NO3 - and SO4 2- and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO2 (+H2) over HCO3 -. 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. Comamonas, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Klebsiella, unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO2 and HCO3 -. For the rock samples from shallower depths, organisms of varied taxa are enriched under CO2 (+H2) and HCO3 -. Pseudomonas, Rhodanobacter, Methyloversatilis, and Thaumarchaeota are major CO2 (+H2) utilizers, while Nocardioides, Sphingomonas, Aeromonas, respond towards HCO3 -. H2 oxidizing Cupriavidus, Hydrogenophilus, Hydrogenophaga, CO2 fixing Cyanobacteria Rhodobacter, Clostridium, Desulfovibrio and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO2, CH4 and H2 concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO3 -, SO4 2- , Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH4 and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H2 utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H2 metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO2 capture and conversion to useful products.

2.
Environ Microbiol ; 24(6): 2837-2853, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897962

RESUMO

Deep terrestrial subsurface represents a huge repository of global prokaryotic biomass. Given its vastness and importance, microbial life within the deep subsurface continental crust remains under-represented in global studies. We characterize the microbial communities of deep, extreme and oligotrophic realm hosted by crystalline Archaean granitic rocks underneath the Deccan Traps, through sampling via 3000 m deep scientific borehole at Koyna, India through metagenomics, amplicon sequencing and cultivation-based analyses. Gene sequences 16S rRNA (7.37 × 106 ) show considerable bacterial diversity and the existence of a core microbiome (5724 operational taxonomic units conserved out of a total 118,064 OTUs) across the depths. Relative abundance of different taxa of core microbiome varies with depth in response to prevailing lithology and geochemistry. Co-occurrence network analysis and cultivation attempt to elucidate close interactions among autotrophic and organotrophic bacteria. Shotgun metagenomics reveals a major role of autotrophic carbon fixation via the Wood-Ljungdahl pathway and genes responsible for energy and carbon metabolism. Deeper analysis suggests the existence of an 'acetate switch', coordinating biosynthesis and cellular homeostasis. We conclude that the microbial life in the nutrient- and energy-limited deep granitic crust is constrained by the depth and managed by a few core members via a close interplay between autotrophy and organotrophy.


Assuntos
Metagenômica , Microbiota , Bactérias , Ciclo do Carbono , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
3.
J Biomol Struct Dyn ; 33(11): 2330-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26156561

RESUMO

Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs.


Assuntos
Adaptação Biológica , Cupriavidus/genética , Farmacorresistência Bacteriana , Genoma Bacteriano , Intoxicação por Metais Pesados , Metais/química , Intoxicação , Ralstonia/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Códon , Biologia Computacional , Cupriavidus/metabolismo , Regulação Bacteriana da Expressão Gênica , Metais/metabolismo , Metais/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Ralstonia/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...