Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857298

RESUMO

As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.


Assuntos
Interferon gama , Oxigênio , Proteínas de Protozoários , Toxoplasma , Animais , Toxoplasma/patogenicidade , Interferon gama/metabolismo , Camundongos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Virulência , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Feminino , Encéfalo/parasitologia , Encéfalo/metabolismo , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
2.
Glycobiology ; 31(11): 1444-1463, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34350945

RESUMO

Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of glycans in surface glycoproteins. We analyzed protein glycosylation in three low-grade bladder cancer cell lines RT4 (grade-1-2), 5637 (grade-2), and SW780 (grade-1), and three high-grade bladder cancer cell lines J82COT (grade-3), T24 (grade-3) and TCCSUP (grade-4), with primary bladder epithelial cells, A/T/N, serving as a normal bladder cell control. Using a variety of approaches including flow cytometry, immunofluorescence, glycomics and gene expression analysis, we observed that the low-grade bladder cancer cell lines RT4, 5637 and SW780 express high levels of the fucosylated Lewis-X antigen (Lex, CD15) (Galß1-4(Fucα1-3)GlcNAcß1-R), while normal bladder epithelial A/T/N cells lack Lex expression. T24 and TCCSUP cells also lack Lex, whereas J82COT cells express low levels of Lex. Glycomics analyses revealed other major differences in fucosylation and sialylation of N-glycans between these cell types. O-glycans are highly differentiated, as RT4 cells synthesize core 2-based O-glycans that are lacking in the T24 cells. These differences in glycan expression correlated with differences in RNA expression levels of their cognate glycosyltransferases, including α1-3/4-fucosyltransferase genes. These major differences in glycan structures and gene expression profiles between low- and high-grade bladder cancer cells suggest that glycans and glycosyltransferases are candidate biomarkers for grading bladder cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Fucosiltransferases/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais/genética , Células Cultivadas , Fucosiltransferases/genética , Glicosilação , Humanos , Neoplasias da Bexiga Urinária/patologia
3.
J Biol Chem ; 296: 100039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33158988

RESUMO

Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals, O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing, and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild-type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.


Assuntos
Núcleo Celular/enzimologia , Citosol/enzimologia , Fucosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Virulência , Animais , Fucosiltransferases/genética , Camundongos , Mutação , Proteínas de Protozoários/genética
4.
J Biol Chem ; 295(27): 9223-9243, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32414843

RESUMO

Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.


Assuntos
Galactose/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Hidroxilação , Hidroxiprolina/metabolismo , Filogenia , Pró-Colágeno-Prolina Dioxigenase/genética , Prolil Hidroxilases/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/fisiologia , Toxoplasma/metabolismo
5.
J Biol Chem ; 294(4): 1104-1125, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30463938

RESUMO

Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc0-2-Man6-GlcNAc2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Glicômica , Polissacarídeos/genética , Polissacarídeos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica
6.
J Biol Chem ; 292(45): 18644-18659, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28928220

RESUMO

Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galß1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.


Assuntos
Citoplasma/enzimologia , Glucosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Toxoplasma/metabolismo , Substituição de Aminoácidos , Proliferação de Células , Biologia Computacional , Citoplasma/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Glucosiltransferases/química , Glucosiltransferases/genética , Glicosilação , Mutação , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/genética , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Estereoisomerismo , Especificidade por Substrato , Toxoplasma/citologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
7.
Infect Immun ; 84(5): 1371-1386, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883596

RESUMO

Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcß4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core ß-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Polissacarídeos/imunologia , Schistosoma mansoni/imunologia , Zigoto/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Antígenos de Helmintos/isolamento & purificação , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Macaca mulatta , Espectrometria de Massas , Camundongos , Análise em Microsséries , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ligação Proteica
8.
J Biol Chem ; 291(9): 4268-80, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26719340

RESUMO

Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.


Assuntos
Glicosiltransferases/metabolismo , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Toxoplasma/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Sequência Conservada , Evolução Molecular , Deleção de Genes , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Hidroxiprolina/metabolismo , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/genética , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento
9.
Glycobiology ; 24(7): 619-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727440

RESUMO

Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcß1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcß1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Imunoglobulina G/imunologia , Lactose/análogos & derivados , Schistosoma mansoni/imunologia , Animais , Apresentação de Antígeno , Células CHO , Engenharia Celular , Cricetinae , Cricetulus , Imunização , Lactose/imunologia , Camundongos , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/terapia
10.
Glycobiology ; 23(7): 877-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23542315

RESUMO

The parasitic blood fluke Schistosoma mansoni synthesizes immunogenic glycans containing the human Lewis x antigen (Le(x); Galactose-ß1-4(Fucα1-3)N-acetylglucosamine-ß-R, also called CD15), but the biological role(s) of this antigen in the parasites and in humans is poorly understood. To develop IgG-based monoclonal antibodies (mAbs) specific for Le(x), we harvested splenocytes from S. mansoni-infected Swiss Webster mice at Week 10 postinfection, when peak IgG responses to glycan antigens occur, and generated a panel of hybridomas secreting anti-glycan IgG that recognize periodate-sensitive epitopes in soluble egg antigens of the parasites, and also recognizes a neoglycoprotein containing a pentasaccharide with the Le(x) sequence. One murine mAb, an IgG3 designated F8A1.1, bound to glycoproteins and glycolipids from schistosome adults and human promyelocytic leukemic HL-60 cells that express Le(x) antigens, as assessed by a wide variety of approaches including immunofluorescence staining, confocal microscopy, flow cytometry and western blotting, as well as overlay assays of glycolipids after thin-layer chromatography. In contrast, F8A1.1 bound weakly to cercariae, 3-h schistosomula and human Jurkat cells. We also directly compared the glycan specificity of F8A1.1 with commercially available anti-CD15 IgG1 (clone W6D3) using a defined glycan microarray. The results demonstrated that F8A1.1 recognized glycans expressing Le(x) epitopes in a terminal nonreducing position, whereas anti-CD15 bound to glycans with multiple repeats of Le(x) epitopes, but not to glycans with a single, terminal Le(x) epitope. Our results show that F8A1.1 recognizes terminal Le(x) epitopes and can be used for identification, immunolocalization, immunoprecipitation and purification of Le(x)-containing glycoconjugates from schistosomes and mammalian cells.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Especificidade de Anticorpos , Antígenos CD15/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Animais , Epitopos/imunologia , Humanos , Hibridomas , Células Jurkat , Linfócitos/imunologia , Camundongos , Oligossacarídeos/imunologia , Baço/citologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...