Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668192

RESUMO

Hydrogen is one of the most promising green energy alternatives due to its high gravimetric energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower (MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst is systematically optimized by thorough investigations on various hydrothermal synthesis and post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode (2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh industrial operational conditions at 60 °C in 6 M KOH at a high current density of 1000 mA/cm2. The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA), and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.

2.
Small ; 20(12): e2307533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940617

RESUMO

Development of advanced electrocatalysts for the green hydrogen production by water electrolysis is an important task to reduce the climate and environmental issues as well as to meet the future energy demands. Herein, Ru/Ni-B-P sphere electrocatalyst is demonstrated by a combination of hydrothermal and soaking approaches, meeting the industrial requirement of low cell voltage with stable high-current operation. The Ru/Ni-B-P sphere catalyst demonstrates low overpotentials of 191 and 350 mV at 300 mA cm-2 with stable high current operation, ranking it as one of the best oxygen evolution reaction (OER) electrocatalysts. The bifunctional 2-E system demonstrates a low cell voltage of 2.49 V at 2000 mA cm-2 in 6 m KOH at 60 °C of harsh industrial operation condition. It also demonstrates outstanding stability with continuous 120 h (5 days) CA operation at 1000 mA cm-2. Further, the hybrid configuration of Ru/Ni-B-P || Pt/C being paired with the conventional benchmark electrode demonstrates a record low 2-E cell voltage of 2.40 V at 2000 mA cm-2 in 6 m KOH and excellent stability at high current of 1500 mA cm-2 under industrial operational condition.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839137

RESUMO

In this work, a novel hybrid SERS platform incorporating hybrid core-shell (HyCoS) AuPd nanoparticles (NPs) and MoS2 nanoplatelets has been successfully demonstrated for strong surface-enhanced Raman spectroscopy (SERS) enhancement of Rhodamine 6G (R6G). A significantly improved SERS signal of R6G is observed on the hybrid SERS platform by adapting both electromagnetic mechanism (EM) and chemical mechanism (CM) in a single platform. The EM enhancement originates from the unique plasmonic HyCoS AuPd NP template fabricated by the modified droplet epitaxy, which exhibits strong plasmon excitation of hotspots at the nanogaps of metallic NPs and abundant generation of electric fields by localized surface plasmon resonance (LSPR). Superior LSPR results from the coupling of distinctive AuPd core-shell NP and high-density background Au NPs. The CM enhancement is associated with the charge transfer from the MoS2 nanoplatelets to the R6G. The direct contact via mixing approach with optimal mixing ratio can effectively facilitate the charges transfer to the HOMO and LUMO of R6G, leading to the orders of Raman signal amplification. The enhancement factor (EF) for the proposed hybrid platform reaches ~1010 for R6G on the hybrid SERS platform.

4.
ACS Appl Mater Interfaces ; 15(1): 2204-2215, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563284

RESUMO

A hybrid device scheme is an attractive strategy in the construction of advanced UV photodetectors due to the flexibility in selecting the components and correspondingly improved optoelectronic properties by the cooperation of various components, which cannot be achieved by a single component device. In this work, a novel hybrid UV photodetector (PD) is demonstrated by adapting AuPt alloy hybrid nanoparticles (AHNPs), ZnO quantum dots (QDs), and graphene quantum dots (GQDs), namely, GQD/ZnO/AHNP PD. The optimized device achieves high-end figure-of-merit performance with a responsivity of 2299 mA/W, detectivity of 7.04 × 1010 jones, and external quantum efficiency of 741%. Enhanced photocurrent can be associated with the hot electron generation around the AuPt AHNPs and swift transfer to the conduction band of ZnO QDs. At the same time, the added carrier injection is achieved by a thin layer of GQDs. High density of hotspots and electromagnetic fields are generated by the strong localized surface plasmon resonance (LSPR) by the uniquely designed AuPt AHNPs with the fully alloyed AuPt NPs and adjacent small background Au NPs. The e-field distribution of various NP configurations is systematically investigated with finite-difference time-domain (FDTD) simulations.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234409

RESUMO

Ultra-fine hydrogen produced by electrochemical water splitting without carbon emission is a high-density energy carrier, which could gradually substitute the usage of traditional fossil fuels. The development of high-performance electrocatalysts at affordable costs is one of the major research priorities in order to achieve the large-scale implementation of a green hydrogen supply chain. In this work, the development of a vanadium-doped FeBP (V-FeBP) microsphere croissant (MSC) electrocatalyst is demonstrated to exhibit efficient bi-functional water splitting for the first time. The FeBP MSC electrode is synthesized by a hydrothermal approach along with the systematic control of growth parameters such as precursor concentration, reaction duration, reaction temperature and post-annealing, etc. Then, the heteroatom doping of vanadium is performed on the best FeBP MSC by a simple soaking approach. The best optimized V-FeBP MSC demonstrates the low HER and OER overpotentials of 52 and 180 mV at 50 mA/cm2 in 1 M KOH in a three-electrode system. In addition, the two-electrode system, i.e., V-FeBP || V-FeBP, demonstrates a comparable water-splitting performance to the benchmark electrodes of Pt/C || RuO2 in 1 M KOH. Similarly, exceptional performance is also observed in natural sea water. The 3D MSC flower-like structure provides a very high surface area that favors rapid mass/electron-transport pathways, which improves the electrocatalytic activity. Further, the V-FeBP electrode is examined in different pH solutions and in terms of its stability under industrial operational conditions at 60 °C in 6 M KOH, and it shows excellent stability.

6.
Sci Rep ; 11(1): 16934, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417491

RESUMO

Herein we have synthesized silver nanoparticles (Ag NPs) using liquid metabolic waste of Bos taurus (A-2 type) urine. Various bio-molecules present in cow urine, are effectively used to reduce silver (Ag) ions into silver nanoparticles in one step. This is bio-inspired electron transfer to Ag ion for the formation of base Ag metal and is fairly prompt and facile. These nanoparticles act as a positive catalyst for various organic transformation reactions. The structural, morphological, and optical properties of the as-synthesized Ag NPs are widely characterized by X-ray diffraction spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscope, Fourier transmission infra-red spectroscopy, and atomic force microscopy. The as-synthesized bio-mimetic Ag NPs show potential activity for several reduction reactions of nitro groups. The Ag NPs were also used for degradation of hazardous dyes such as Methylene blue and Crystal violet with good degradation rate constant.

7.
ACS Appl Mater Interfaces ; 13(2): 3408-3418, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399456

RESUMO

In this work, a nanoscale device architecture is demonstrated for a UV photodetector application on sapphire (0001), incorporating the plasmonic hybrid nanoparticles (HNPs), graphene quantum dots (GQDs), and titanium oxide (TiO2) for the first time. The hybrid GQDs/TiO2/HNPs photodetector exhibits the photocurrent of 1.58 × 10-5 A under the 1.64 mW/mm2 of 275 nm illumination at 10 V, which is around two order increase from the bare TiO2 device. The proposed architecture demonstrates a low dark current of ∼1 × 10-10 A at 10 V and thus the device demonstrates an excellent photo to dark current ratio along with the improved rise and fall time on the order of several hundred millisecond. The enhanced performance of device architecture is attributed to the efficient utilization of localized surface plasmon resonance (LSPR) induced hot carriers as well as scattered photons from the plasmonic HNPs that are fully encapsulated by the photoactive TiO2 layers. Furthermore, the addition of GQDs on the TiO2 can offer an additional photon absorption pathway. The proposed hybrid architecture of GQDs/TiO2/HNPs demonstrates the integration of the photon absorption and carrier transfer properties of plasmonic HNPs, GQDs, and TiO2 for an enhanced ultraviolet (UV) photoresponse. The photocurrent enhancement mechanisms of the hybrid device architecture are thoroughly investigated based on the finite-difference time domain (FDTD) simulation along with the energy band analysis. This work demonstrates a great potential of the hybrid device architecture for high-performance UV photodetectors.

8.
Nanomaterials (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076432

RESUMO

A super-porous hybrid platform can offer significantly increased number of reaction sites for the analytes and thus can offer advantages in the biosensor applications. In this work, a significantly improved sensitivity and selectivity of hydrogen peroxide (H2O2) detection is demonstrated by a super-porous hybrid CuO/Pt nanoparticle (NP) platform on Si substrate as the first demonstration. The super-porous hybrid platform is fabricated by a physiochemical approach combining the physical vapor deposition of Pt NPs and electrochemical deposition of super-porous CuO structures by adopting a dynamic hydrogen bubble technique. Under an optimized condition, the hybrid CuO/Pt biosensor demonstrates a very high sensitivity of 2205 µA/mM·cm2 and a low limit of detection (LOD) of 140 nM with a wide detection range of H2O2. This is meaningfully improved performance as compared to the previously reported CuO-based H2O2 sensors as well as to the other metal oxide-based H2O2 sensors. The hybrid CuO/Pt platform exhibits an excellent selectivity against other interfering molecules such as glucose, fructose, dopamine, sodium chloride and ascorbic acid. Due to the synergetic effect of highly porous CuO structures and underlying Pt NPs, the CuO/Pt architecture offers extremely abundant active sites for the H2O2 reduction and electron transfer pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...