Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Relativ Gravit ; 54(12): 156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465478

RESUMO

Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.

2.
Rev Sci Instrum ; 91(9): 094504, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003778

RESUMO

The Einstein Telescope (ET) is a proposed next-generation, underground gravitational-wave detector to be based in Europe. It will provide about an order of magnitude sensitivity increase with respect to the currently operating detectors and, also extend the observation band targeting frequencies as low as 3 Hz. One of the first decisions that needs to be made is about the future ET site following an in-depth site characterization. Site evaluation and selection is a complicated process, which takes into account science, financial, political, and socio-economic criteria. In this paper, we provide an overview of the site-selection criteria for ET, provide a formalism to evaluate the direct impact of environmental noise on ET sensitivity, and outline the necessary elements of a site-characterization campaign.

3.
Phys Rev Lett ; 117(20): 201102, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886472

RESUMO

Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

4.
Phys Rev Lett ; 98(11): 111101, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501038

RESUMO

We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...