Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(11): 1263-1270, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36812469

RESUMO

ConspectusResearch at historically black colleges and universities (HBCUs) started with humble beginnings by G. W. Carver at Tuskegee Institute AL, the nation's first HBCU. He is now remembered as the man who transformed one crop, peanuts to more than 300 useful products such as food, beverages, medicines, cosmetics, and chemicals. However, research was not the focus of most of the newly founded HBCUs to provide, primarily, liberal arts education and training in agriculture for the black minority. HBCUs remained segregated, lacking facilities such as libraries and scientific/research equipment comparable to those at traditionally white institutions. While the Civil Rights Act of 1964 heralded the dawn of "equal opportunity" and progressive desegregation in the South, many public HBCUs had to close or merge with white institutions due to loss of funding and/or students. In order to remain competitive in enrollment and financial support of the best talents, HBCUs have been expanding their research and federal contracts by working in collaboration with research-intensive institutions and/or minority-serving institutions (MSIs). Albany State University (ASU), an HBCU with a great tradition of in-house and extramural undergraduate research, has partnered with the laboratory of Dr. John Miller at Brookhaven National Laboratory (BNL) to offer the best training and mentorship to our undergraduates. Students synthesized and performed conductivity measurements on a new generation of ion-pair salts. One of these constitutes, potentially, a nonaqueous electrolyte for the next generation of high-energy-density batteries owing to its electrochemical properties.The quest for rechargeable batteries with greater energy density and capable of shorter recharge time at the "pump" for electrical vehicles (EVs) is leading the development of electrolytes with higher ionic mobility and greater limiting conductivity. In order to achieve high energy density, it is vital for an electrolyte to be electrochemically stable while operating at high voltages.The development of a weakly coordinating anion/cation electrolyte for energy storage applications offers a challenge of technological significance. This class of electrolytes is advantageous for the investigation of electrode processes in low-polarity solvents. The improvement arises from the optimization of both ionic conductivity and solubility of the ion pair formed between a substituted tetra-arylphosphonium (TAPR) cation and tetrakis-fluoroarylborate (TFAB), a weakly coordinating anion. The chemical "push-pull" between cation and anion affords a highly conducting ion pair in low-polarity solvents such as tetrahydrofuran (THF) and tert-butyl methyl ether (TBME). The limiting conductivity value of the salt, namely, tetra-p-methoxy-phenylphosphonium-tetrakis(pentafluorophenyl)borate or TAPR/TFAB (R = p-OCH3), is in the range of lithium hexafluorophosphate (LiPF6) used in lithium-ion batteries (LIBs). This TAPR/TFAB salt can improve the efficiency and stability of batteries over those of existing and commonly used electrolytes by optimizing the conductivity tailored to the redox-active molecules. LiPF6 dissolved in carbonate solvents is unstable with high-voltage electrodes that are required to achieve greater energy density. In contrast, the TAPOMe/TFAB salt is stable and has a good solubility profile in low-polarity solvents given its relatively great size. And it constitutes a low-cost supporting electrolyte capable of bringing nonaqueous energy storage devices to compete with existing technologies.

2.
Int J Innov Educ Res ; 3(6): 12-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27294205

RESUMO

Solvent-free reaction using a high-speed ball milling technique has been applied to the classical Ullmann coupling reaction. Cross-coupling biarylation of several nitroaryl chlorides was achieved in good yields when performed in custom-made copper vials through continuous shaking without additional copper or solvent. Cross-coupling products were obtained almost pure and NMR-ready. These reactions were cleaner than solution phase coupling which require longer reaction time in high boiling solvents, and added catalysts as well as lengthy extraction and purification steps. Gram quantities of cross biaryl compounds have been synthesized with larger copper vials, a proof that this method can be used to reduce industrial waste and for sustainability.

3.
Int J Innov Educ Res ; 3(8): 136-153, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27239565

RESUMO

Electrophilic nitration of halo-substituted benzo[c]cinnolines and benzenoids has been achieved regioselectively. The nitro group entry was always ortho to the halo group or/and the aromatic ring. This regioselective electrophilic ortho-nitration was accomplished in mixed acid/mild temperature conditions. Regioselectivity ortho to the halo/ring group(s) was observed with or without proximal steric hindrance. Chlorides and bromides worked equally well in directing these high-yielding ortho-selective reactions.

4.
Int J Innov Educ Res ; 2(12): 133-149, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27239564

RESUMO

Solvent-free reaction using a high-speed ball milling technique has been applied to the classical Ullmann coupling reaction for the first time. Biarylation of 2-iodonitrobenzene was achieved in quantitative yield when performed in a custom-made copper vial through continuous shaking without additional copper or solvent. The product was solid, NMR ready and required no lengthy extraction for purification. This reaction was cleaner, and faster than solution phase coupling which requires longer reaction time in high boiling solvents, added copper catalyst, and lengthy extraction and purification steps. Gram quantities of the biaryl compound were synthesized in larger copper vials. This is a general method that can be used to effectively reduce industrial waste en route to sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...