Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 852116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498674

RESUMO

Multiple strategies are available that could reduce nitrogen (N) fertilizer use in agricultural systems, ranging from voluntary adoption of new N management practices by farmers to government regulations. However, these strategies have different economic and political costs, and their relative effectiveness in decreasing N leaching has not been evaluated at scale, particularly concerning potential trade-offs in crop yield and profitability. To inform policy efforts in the US Midwest, we quantified the effects of four policy scenarios designed to reduce fertilizer N inputs without sacrificing maize yields below 95%. A simulated dataset for economically optimum N rates and corresponding leaching losses was developed using a process-based crop model across 4,030 fields over 30 years. Policy scenarios were (1) higher N prices, (2) N leaching fee, (3) N balance fee, and (4) voluntary reduction of N use by farmers, each implemented under a range of sub-levels (low to high severity). Aggregated results show that all policies decreased N rates and N leaching, but this was associated with an exponential increase in economic costs. Achieving an N leaching reduction target of 20% has an estimated pollution control cost of 30-37 US$/ha, representing 147 million US$/year when scaled up to the state level, which is in the range of current government payments for existing conservation programs. Notably, such control of N losses would reduce the environmental impact of agriculture on water quality (externalities) by an estimated 524 million US$/year, representing an increase in society welfare of 377 million US$/year. Among the four policies, directly charging a fee on N leaching helped mitigate economic losses while improving the point source reduction effect (i.e., targeting fields that were leaching hotspots) and better internalization effect (i.e., targeting fields with higher environmental impact costs). This study provides actionable data to inform the development of cost-effective N fertilizer regulations by integrating changes in crop productivity and N losses in economic terms at the field level.

2.
Data Brief ; 40: 107753, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35024393

RESUMO

Nitrogen (N) fertilizer recommendations for corn (Zea mays L.) in the US Midwest have been a puzzle for several decades, without agreement among stakeholders for which methodology is the best to balance environmental and economic outcomes. Part of the reason is the lack of long-term data of crop responses to N over multiple fields since trial data is often limited in the number of soils and years it can explore. To overcome this limitation, we designed an analytical platform based on crop simulations run over millions of farming scenarios over extensive geographies. The database was calibrated and validated using data from more than four hundred trials in the region. This dataset can have an important role for research and education in N management, machine leaching, and environmental policy analysis. The calibration and validation procedure provides a framework for future gridded crop model studies. We describe dataset characteristics and provide thorough descriptions of the model setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...