Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234453

RESUMO

To design metal nanoparticles (NPs) on a perovskite surface, the exsolution method has been extensively used for efficient catalytic reactions. However, there are still the challenges of finding a combination and optimization for the NPs' control. Thus, we report in situ control of the exsolved Ni NPs from perovskite to apply as a catalyst for dry reforming of methane (DRM). The La0.8Ce0.1Ti0.6Ni0.4O3 (LCTN) is designed by Ce doping to incorporate high amounts of Ni in the perovskite lattice and also facilitate the exsolution phenomenon. By control of the eluted Ni NPs through exsolution, the morphological properties of exsolved Ni NPs are observed to have a size range of 10~49 nm, while the reduction temperatures are changed. At the same time, the chemical structure of the eluted Ni NPs is also changed by an increased reduction temperature to a highly metallic Ni phase with an increased oxygen vacancy at the perovskite oxide surface. The optimized composite nanomaterial displays outstanding catalytic performance of 85.5% CH4 conversion to produce H2 with a value of 15.5 × 1011 mol/s·gcat at 60.2% CO conversion, which shows the importance of the control of the exsolution mechanism for catalytic applications.

2.
Bioresour Technol ; 250: 86-93, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29156369

RESUMO

Direct and economic transformation of biodiesel derived crude glycerol is gaining more significance. During screening of bacterial cultures Klebsiella pneumoniae and Enterobacter aerogenes were able to convert crude bio-glycerol to 2,3-butanediol (2,3-BDO) and 1,3-propanediol (1,3-PDO), as major compounds, ethanol and acetoin as minor compounds, with a conversion of 69% and 79% respectively. Process optimization could achieve maximum conversion at pH 7.0, 37 °C, 30-40 g/L glycerol and 1.5 g of inoculum until 120 h. Mixed cultures led to complete glycerol conversion with optimal yield and productivity. An innovative approach of using crude glycerol for sustained growth and tolerance of bacteria as source of carbon and energy makes this study more significant. In addition to this, a mixed culture concept introduced here is expected to make impact in process economics for industrial scale synthesis for direct transformation of glycerol into C3 and specifically, C4 diols.


Assuntos
Butileno Glicóis , Glicerol , Fermentação , Propilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...