Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(45): 31460-31469, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37901271

RESUMO

This study systematically investigates the lubricating properties of bio-hydrogenated diesel (BHD), a synthetic diesel produced through biomass hydrogenation of vegetable oil. Despite having similar chemical properties to petroleum diesel, BHD has poor lubricating properties due to the removal of sulfur and oxygenated compounds during the hydrogenation process, which could damage the engine. To address this issue, fatty acid methyl esters (FAME) was added as an additive to BHD to enhance its fuel and lubricating properties. FAME is a polar molecule with good lubricating properties that adsorb on the surface to protect against wear. The study found that adding as little as 5% FAME significantly improved the lubricating properties of BHD. The wear scar diameter (WSD) decreased from 609 µm to 249 µm, and the average film was 94% with an average coefficient of friction of 0.138 by only 5% FAME addition investigated by High Frequency Reciprocating Rig with ISO 12156-1: 2018. This shows that blending FAME with BHD could reduce engine wear and improve its lubricating properties. Disc samples were analyzed using a Scanning Electron Microscope (SEM), OLS5100 3D laser microscopy, and Fourier Transform Infrared Microscopy (FTIR) to examine the worn surface both physically and chemically. An increase in the percentage of FAME addition to BHD resulted in a smoother worn surface, exhibiting reduced delamination and debris compared to pure BHD. This effect was attributed to the protective film formed by FAME. The study highlights the potential of FAME as an additive to enhance the lubricating properties of BHD and reduce engine wear.

2.
J Colloid Interface Sci ; 356(2): 598-604, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21292278

RESUMO

Competitive counterion binding of sodium and calcium to micelles, and mixed micellization have been investigated in the systems sodium dodecylsulfate (NaDS)/sodium decylsulfate (NaDeS) and NaDS/sodium 4-octylbenzenesulfonate (NaOBS) in order to accurately model the activity of the relevant species in solution. The critical micelle concentration (CMC) and equilibrium micelle compositions of mixtures of these anionic surfactants, which is necessary for determining fractional counterion binding measurements, is thermodynamically modeled by regular solution theory. The mixed micelle is ideal (the regular solution parameter ß(M)=0) for the NaDS/NaOBS system, while the mixed micelle for NaDS/NaDeS has ß(M)=-1.05 indicating a slight synergistic interaction. Counterion binding of sodium to the micelle is influenced by the calcium ion concentration, and vice versa. However, the total degree of counterion binding is essentially constant at approximately 0.65 charge negation at the micelle's surface. The counterion binding coefficients can be quantitatively modeled using a simple equilibrium model relating concentrations of bound and unbound counterions.


Assuntos
Benzenossulfonatos/química , Micelas , Dodecilsulfato de Sódio/química , Tensoativos/química , Sítios de Ligação , Íons/química , Modelos Químicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...