Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445602

RESUMO

Cannabis is the most-used recreational drug worldwide, with a high prevalence of use among adolescents. In animal models, long-term adverse effects were reported following chronic adolescent exposure to the main psychotomimetic component of the plant, delta-9-tetrahydrocannabinol (THC). However, these studies investigated the effects of pure THC, without taking into account other cannabinoids present in the cannabis plant. Interestingly, cannabidiol (CBD) content seems to mitigate some of the side effects of THC, at least in adult animals. Thus, in female rats, we evaluated the long-term consequences of a co-administration of THC and CBD at a 3:1 ratio, chosen based on the analysis of recently confiscated illegal cannabis samples in Europe. CBD content is able to mitigate some of the long-term behavioral alterations induced by adolescent THC exposure as well as long-term changes in CB1 receptor and microglia activation in the prefrontal cortex (PFC). We also investigated, for the first time, possible long-term effects of chronic administration of a THC/CBD combination reminiscent of "light cannabis" (CBD:THC in a 33:1 ratio; total THC 0.3%). Repeated administration of this CBD:THC combination has long-term adverse effects on cognition and leads to anhedonia. Concomitantly, it boosts Glutamic Acid Decarboxylase-67 (GAD67) levels in the PFC, suggesting a possible lasting effect on GABAergic neurotransmission.


Assuntos
Comportamento Animal/efeitos dos fármacos , Canabidiol/administração & dosagem , Cognição/efeitos dos fármacos , Dronabinol/administração & dosagem , Alucinógenos/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Feminino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica
2.
Eur Neuropsychopharmacol ; 36: 181-190, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32139186

RESUMO

A growing body of literature suggests that cannabis intake can induce memory loss in humans and animals. Besides the recreational use, daily cannabis users may also belong to the ever-increasing population of patients who are administered cannabis as a medicine. As such, they also can experience impairments in memory as a negative side effect of their therapy. Comprehension of the neurobiological mechanisms responsible for such detrimental effects would be therefore of paramount relevance to public health. The investigation of neurobiological mechanisms in humans, despite the progress in the development of imaging technologies that allow the study of brain structure and function, still suffers substantial limitations. Animal models, instead, enable us to establish a causal relationship and thus to better elucidate the neurobiological mechanisms underlying the process under study. In this review, we will attempt to collect the insight coming from animal models about cannabis effects on memory, trying to depict a picture of the neurobiological mechanisms contributing to the development of cognitive deficits following cannabis use.


Assuntos
Encéfalo/efeitos dos fármacos , Dronabinol/efeitos adversos , Alucinógenos/efeitos adversos , Uso da Maconha/efeitos adversos , Transtornos da Memória/induzido quimicamente , Animais , Encéfalo/metabolismo , Dronabinol/administração & dosagem , Alucinógenos/administração & dosagem , Humanos , Uso da Maconha/psicologia , Uso da Maconha/tendências , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...