Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 59(4): 751-774, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243501

RESUMO

Phylogenetic analyses of rbcL gene sequences and of concatenated rbcL, psbA, and nuclear SSU rRNA gene sequences resolved the generitype of Lithothamnion, L. muelleri, in a clade with three other southern Australian species, L. kraftii sp. nov., L. saundersii sp. nov., and L. woelkerlingii sp. nov. Cold water boreal species currently classified in Lithothamnion and whose type specimens have been sequenced are transferred to Boreolithothamnion gen. nov., with B. glaciale comb. nov. as the generitype. The other species are B. giganteum comb. nov., B. phymatodeum comb. nov., and B. sonderi comb. nov., whose type specimens are newly sequenced, and B. lemoineae comb. nov., B. soriferum comb. nov., and B. tophiforme comb. nov., whose type specimens were already sequenced. Based on rbcL sequences from the type specimens of Lithothamnion crispatum, L. indicum, and L. superpositum, each is recognized as a distinct species and transferred to the recently described Roseolithon as R. crispatum comb. nov., R. indicum comb. nov., and R. superpositum com. nov., respectively. To correctly assign species to these three genera based only on morpho-anatomy, specimens must have multiporate conceptacles and some epithallial cells with flared walls. The discussion provides examples demonstrating that only with phylogenetic analyses of DNA sequences can the evolution of morpho-anatomical characters of non-geniculate corallines be understood and applied at the correct taxonomic rank. Finally, phylogenetic analyses of DNA sequences support recognition of the Hapalidiales as a distinct order characterized by having multiporate tetra/bisporangial conceptacles, and not as a suborder of Corallinales whose tetra/bisporangial conceptacles are uniporate.


Assuntos
Rodófitas , Filogenia , Análise de Sequência de DNA , Austrália , RNA Ribossômico 16S/genética
2.
J Phycol ; 58(1): 161-178, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862980

RESUMO

A multigene (psbA, rbcL, 18S rDNA) molecular phylogeny of the genus Phymatolithon showed a polyphyletic grouping of two monophyletic clades within the Hapalidiales. DNA sequence data integrated with morpho-anatomical comparisons of type material and of recently collected specimens were used to establish Phymatolithopsis gen. nov. with three species, P. prolixa comb. nov., the generitype, P. repanda comb. nov. and P. donghaensis sp. nov. Phymatolithopsis is sister to Mesophyllum and occurs in a clade distinct from Phymatolithon and boreal species currently assigned to Lithothamnion. Morpho-anatomically, Phymatolithopsis is comprised of species that are non-geniculate and encrusting, bear epithallial cells with rounded walls (not flared), subepithallial initials that are usually as short as or shorter than their immediate inward derivatives, conceptacle primordia from all stages forming superficially directly from subepithallial initials, mature carposporangial conceptacles with a discontinuous fusion cell, gonimoblast filaments that develop at the margins of the fusion cell around the periphery of the carposporangial conceptacle chambers, and multiporate tetra/bisporangial conceptacles. Phymatolithopsis can be distinguished from Phymatolithon by the origin of its conceptacle primordia, which are initiated superficially, directly from the layer of subepithallial initials below the epithallial cells and the distribution of gonimoblast filaments in carposporangial conceptacles, that are at the margins of the fusion cells.


Assuntos
Rodófitas , Sequência de Bases , DNA Ribossômico , Filogenia , RNA Ribossômico 16S , Rodófitas/genética , Análise de Sequência de DNA
3.
Conserv Physiol ; 9(1): coab078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532057

RESUMO

Despite the importance of ecotourism in species conservation, little is known about the industry's effects on wildlife. In South Africa, some African penguin (Spheniscus demersus) colonies have become tourist attractions. The species is globally endangered, with population sizes decreasing over the past 40 years. As African penguin chicks are altricial and unable to move away from anthropogenic stressors, it is important to evaluate the effect of tourist activities on baseline glucocorticoid levels as a measure of potential disturbance. Chicks at three study sites within two breeding colonies (Robben Island, Stony Point), with varying levels of exposure to tourism (low/moderate/high) were monitored. Urofaecal samples were collected to determine urofaecal glucocorticoid metabolite (ufGCM) concentrations as an indication of baseline stress physiology. Morphometric measurements were taken to compare body condition between sites. Penguin chicks experiencing low, infrequent human presence had significantly higher mean (± standard deviation) ufGCM levels [1.34 ± 1.70 µg/g dry weight (DW)] compared to chicks experiencing both medium (0.50 ± 0.40 µg/g DW, P = 0.001) and high levels of human presence (0.57 ± 0.47 µg/g DW, P = 0.003). There was no difference in chick body condition across sites. These results suggest that exposure to frequent human activity may induce habituation/desensitization in African penguin chicks. Acute, infrequent human presence was likely an important driver for comparatively higher ufGCM levels in chicks, though several other environmental stressors may also play an important role in driving adrenocortical activity. Nevertheless, as unhabituated chicks experiencing infrequent anthropogenic presence showed significantly higher ufGCM levels, managers and legislation should attempt to minimize all forms of activity around important breeding colonies that are not already exposed to regular tourism. Although the results of this study are crucial for developing enhanced conservation and management protocols, additional research on the long-term effect of anthropogenic activities on African penguin physiology is required.

4.
J Phycol ; 56(6): 1625-1641, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32638378

RESUMO

A partial rbcL sequence from the type material of Spongites discoideus from southern Argentina showed that it was distinct from rbcL sequences of South African specimens to which that name had been applied based on morpho-anatomy. A partial rbcL sequence from an original syntype specimen, herein designated the lectotype, of Lithophyllum marlothii, type locality Camps Bay, Western Cape Province, South Africa, was identical to rbcL sequences of South African field-collected specimens assigned to S. discoideus. Based on phylogenetic analyses of rbcL and/or psbA sequences, both of these species belong in Pneophyllum and are transferred there as P. discoideum comb. nov. and P. marlothii comb. nov. The two species exhibit a distinct type of development where thick, secondary, monomerous disks are produced from thin, primary, dimerous crusts. Whether this type of development represents an example of convergent evolution or is characteristic of a clade of species within Pneophyllum remains to be resolved.


Assuntos
Rodófitas , Argentina , Filogenia , RNA Ribossômico 16S , Rodófitas/genética , Análise de Sequência de DNA , África do Sul
5.
J Phycol ; 54(3): 391-409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574890

RESUMO

A multi-gene (SSU, LSU, psbA, and COI) molecular phylogeny of the family Corallinaceae (excluding the subfamilies Lithophylloideae and Corallinoideae) showed a paraphyletic grouping of six monophyletic clades. Pneophyllum and Spongites were reassessed and recircumscribed using DNA sequence data integrated with morpho-anatomical comparisons of type material and recently collected specimens. We propose Chamberlainoideae subfam. nov., including the type genus Chamberlainium gen. nov., with C. tumidum comb. nov. as the generitype, and Pneophyllum. Chamberlainium is established to include several taxa previously ascribed to Spongites, the generitype of which currently resides in Neogoniolithoideae. Additionally we propose two new genera, Dawsoniolithon gen. nov. (Metagoniolithoideae), with D. conicum comb. nov. as the generitype and Parvicellularium gen. nov. (subfamily incertae sedis), with P. leonardi sp. nov. as the generitype. Chamberlainoideae has no diagnostic morpho-anatomical features that enable one to assign specimens to it without DNA sequence data, and it is the first subfamily to possess both Type 1 (Chamberlainium) and Type 2 (Pneophyllum) tetra/bisporangial conceptacle roof development. Two characters distinguish Chamberlainium from Spongites: tetra/biasporangial conceptacle chamber diameter (<300 µm in Chamberlainium vs. >300 µm in Spongites) and tetra/bisporangial conceptacle roof thickness (<8 cells in Chamberlainium vs. >8 cells in Spongites). Two characters also distinguish Pneophyllum from Dawsoniolithon: tetra/bisporangial conceptacle roof thickness (<8 cells in Pneophyllum vs. >8 cells in Dawsoniolithon) and thallus construction (dimerous in Pneophyllum vs. monomerous in Dawsoniolithon).


Assuntos
Filogenia , Rodófitas/classificação , DNA de Algas/análise , Oceano Índico , Oceano Pacífico , Rodófitas/genética , Análise de Sequência de DNA
6.
J Phycol ; 51(6): 1137-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26987008

RESUMO

The diagnosis of the order Sporolithales is currently restricted to tetrasporangial anatomy. Until recently, there were few reports about gametangial, and more specifically carposporangial material for the Sporolithales. This study provides the first detailed observations of the anatomy of the mature carposporophyte phase from three species of Sporolithales commonly found in rhodolith beds from Brazil: Sporolithon episporum, S. ptychoides, and Sporolithon sp. Using these observations, along with previously published descriptions and illustrations from other representative species in the order, a comparison was made with the other three orders (Corallinales, Hapalidiales, and Rhodogorgonales) of the Corallinophycidae. We amend the diagnosis of the order Sporolithales to include the anatomy of the mature carposporophyte as follows: carposporangial conceptacles that lack a central fusion cell, but instead with numerous, short, one to two-celled, filaments that bear oblong terminal carposporangia that are distributed across the conceptacle chamber floor and walls.

7.
Mol Phylogenet Evol ; 61(3): 697-713, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21851858

RESUMO

Systematics of the red algal order Corallinales has a long and convoluted history. In the present study, molecular approaches were used to assess the phylogenetic relationships based on the analyses of two datasets: a large dataset of SSU sequences including mainly sequences from GenBank; and a combined dataset including four molecular markers (two nuclear: SSU, LSU; one plastidial: psbA; and one mitochondrial: COI). Phylogenetic analyses of both datasets re-affirmed the monophyly of the Corallinales as well as the two families (Corallinaceae and Hapalidiaceae) currently recognized within the order. Three of the four subfamilies of the Corallinaceae (Corallinoideae, Lithophylloideae, Metagoniolithoideae) were also resolved as a monophyletic lineage whereas members of the Mastophoroideae were resolved as four distinct lineages. We therefore propose to restrict the Mastophoroideae to the genera Mastophora, Metamastophora, and possibly Lithoporella in the aim of rendering this subfamily monophyletic. In addition, our phylogenies resolved the genus Hydrolithon in two unrelated lineages, one containing the generitype Hydrolithon reinboldii and the second containing Hydrolithon onkodes, which used to be the generitype of the now defunct genus Porolithon. We therefore propose to resurrect the genus Porolithon for the second lineage encompassing those species with primarily monomerous thalli, and trichocyte arrangements in large pustulate horizontal rows. Moreover, our phylogenetic analyses revealed the presence of cryptic diversity in several taxa, shedding light on the need for further studies to better circumscribe species frontiers within the diverse order Corallinales, especially in the genera Mesophyllum and Neogoniolithon.


Assuntos
Núcleo Celular/genética , Evolução Molecular , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Rodófitas/genética , Sequência de Bases , Bases de Dados Genéticas , Funções Verossimilhança , Filogenia , Rodófitas/anatomia & histologia , Rodófitas/classificação , Subunidades Ribossômicas Menores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...