Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 85, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493086

RESUMO

BACKGROUND: The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS: The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-ß-xylanase and ß-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA ß-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION: This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.


Assuntos
Edição de Genes , Saccharomyces cerevisiae , Xilanos , Saccharomyces cerevisiae/metabolismo , Fermentação , Hidrólise , Sistemas CRISPR-Cas , Etanol/metabolismo , Polímeros/metabolismo , Glucuronidase , Xilose/metabolismo
2.
Carbohydr Polym ; 294: 119737, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868741

RESUMO

Enzymatic degradation of plant polysaccharide networks is a complex process that involves disrupting an intimate assembly of cellulose and hemicelluloses in fibrous matrices. To mimic this assembly and to elucidate the efficiency of enzymatic degradation in a rapid way, models with physicochemical equivalence to natural systems are needed. Here, we employ xylan-coated cellulose thin films to monitor the hydrolyzing activity of an endo-1,4-ß-xylanase. In situ surface plasmon resonance spectroscopy (SPRS) revealed a decrease in xylan areal mass ranging from 0.01 ± 0.02 to 0.52 ± 0.04 mg·m-2. The extent of digestion correlates to increasing xylanase concentration. In addition, ex situ determination of released monosaccharides revealed that incubation time was also a significant factor in degradation (P > 0.01). For both experiments, atomic force microscopy confirmed the removal of xylans from the cellulose thin films. We provide a new model platform that offers nanoscale sensitivity for investigating biopolymer interactions and their susceptibility to enzymatic hydrolysis.


Assuntos
Celulose , Xilanos , Biopolímeros , Celulose/química , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Xilanos/química
3.
J Appl Microbiol ; 132(2): 822-840, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34327773

RESUMO

Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.


Assuntos
Galinhas , Ácido Hialurônico , Animais , Fermentação , Masculino , Streptococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...