Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 103, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755681

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is marked by a dismal survival rate, lacking effective therapeutics due to its aggressive growth, late-stage diagnosis, and chemotherapy resistance. Despite debates on NF-κB targeting for PDAC treatment, no successful approach has emerged. METHODS: To elucidate the role of NF-κB, we ablated NF-κB essential modulator (NEMO), critical for conventional NF-κB signaling, in the pancreata of mice that develop precancerous lesions (KC mouse model). Secretagogue-induced pancreatitis by cerulein injections was utilized to promote inflammation and accelerate PDAC development. RESULTS: NEMO deletion reduced fibrosis and inflammation in young KC mice, resulting in fewer pancreatic intraepithelial neoplasias (PanINs) at later stages. Paradoxically, however, NEMO deletion accelerated the progression of these fewer PanINs to PDAC and reduced median lifespan. Further, analysis of tissue microarrays from human PDAC sections highlighted the correlation between reduced NEMO expression in neoplastic cells and poorer prognosis, supporting our observation in mice. Mechanistically, NEMO deletion impeded oncogene-induced senescence (OIS), which is normally active in low-grade PanINs. This blockage resulted in fewer senescence-associated secretory phenotype (SASP) factors, reducing inflammation. However, blocked OIS fostered replication stress and DNA damage accumulation which accelerated PanIN progression to PDAC. Finally, treatment with the DNA damage-inducing reagent etoposide resulted in elevated cell death in NEMO-ablated PDAC cells compared to their NEMO-competent counterparts, indicative of a synthetic lethality paradigm. CONCLUSIONS: NEMO exhibited both oncogenic and tumor-suppressive properties during PDAC development. Caution is suggested in therapeutic interventions targeting NF-κB, which may be detrimental during PanIN progression but beneficial post-PDAC development.


Assuntos
Carcinoma Ductal Pancreático , Progressão da Doença , NF-kappa B , Neoplasias Pancreáticas , Transdução de Sinais , Animais , Camundongos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/etiologia , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carcinoma in Situ/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Camundongos Knockout , Linhagem Celular Tumoral
2.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a largely incurable cancer type. Its high mortality is attributed to the lack of efficient biomarkers for early detection combined with its high metastatic properties. The aim of our study was to investigate the role of NF-κB signaling in the development and metastasis of PDAC. We used the well-established KPC mouse model, and, through genetic manipulation, we deleted NF-κB essential modulator (NEMO) in the pancreata of KPC mice. Interestingly, NEMO deletion altered the differentiation status of the primary tumor but did not significantly affect its development. However, in the absence of NEMO, the median survival of the mice was prolonged by 13.5 days (16%). In addition, examination of the liver demonstrated that, whereas KPC mice occasionally developed liver macro-metastasis, NEMO deletion completely abrogated this outcome. Further analysis of the tumor revealed that the expression of epithelial-mesenchymal transition (EMT) transcription factors was diminished in the absence of NEMO. Conclusively, our study provides evidence that NF-κB is dispensable for the progression of high-grade PanINs towards PDAC. In contrast, NF-κB signaling is essential for the development of metastasis by regulating the gene expression program of EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...