Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1029834

RESUMO

Mosquitoes are widely distributed around the world and carry a diverse array of viruses. Among these, mosquito-borne viruses possess the capability to replicate in both blood-sucking arthropods and vertebrate cells, rendering them significant threats to public health. For many years, the surveillance of mosquito-borne viruses mainly relied on traditional methods such as virus isolation and culture. The emergence of high-throughput sequencing (HTS) technology has not only revealed the entire spectrum of mosquito virome, but also provided a basic methodology for the rapid screening of mosquito-borne pathogens and identification of new species. Consequently, HTS has facilitated the prevention and control of mosquito-borne diseases. This review aims to describe the methods and application of HTS in the detection of mosquito-borne viruses, while also summarizing the advantages and disadvantages of HTS-based detection of mosquito-borne pathogens compared to traditional methods.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-517609

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467646

RESUMO

Game animals are wildlife species often traded and consumed as exotic food, and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1725 game animals, representing 16 species and five mammalian orders, sampled across China. From this we identified 71 mammalian viruses, with 45 described for the first time. Eighteen viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high risk viruses. We identified the transmission of Bat coronavirus HKU8 from a bat to a civet, as well as cross-species jumps of coronaviruses from bats to hedgehogs and from birds to porcupines. We similarly identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence. HighlightsO_LI1725 game animals from five mammalian orders were surveyed for viruses C_LIO_LI71 mammalian viruses were discovered, 18 with a potential risk to humans C_LIO_LICivets harbored the highest number of potential high risk viruses C_LIO_LIA species jump of an alphacoronavirus from bats to a civet was identified C_LIO_LIH9N2 influenza virus was detected in a civet and an Asian badger C_LIO_LIHumans viruses were also identified in game animals C_LI

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262865

RESUMO

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus - SARS-CoV-2. Herein, to provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. Consequently, we identified 37 pathogen species, comprising 15 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (12.8%). However, SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen - Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA