Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; 13(1): 100413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33654345

RESUMO

BACKGROUND: Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. OBJECTIVE: AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. MATERIALS AND METHODS: Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. RESULTS: Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co-crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of -8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro- Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. CONCLUSION: The results provide lead that, the presence of Mpro- Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies.

2.
Phytomedicine ; 50: 178-183, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466976

RESUMO

BACKGROUND: Bunium persicum commonly called as Kala zeera, a very high value herbaceous spice used for medicinal purposes is often adulterated with Cuminum cyminum or Safed zeera, a closely related species. Lack of distinctive morphological features makes the identification of genuine kala zeera from its adulterant difficult, the problem is even exaggerated in case of powdered material. METHODOLOGY: Genomic DNA was extracted from all the plant materials by using CTAB-SDS method (Möller et al., 1992) with slight modifications. On the basis of reproducibility and high amplification ability, four universal barcoding loci viz. ITS2, rbcL-a, mat K and psbA-trnH and a specific locus Cum were used in the present study. The amplified PCR products were sequenced bidirectionally and assembled to obtain contigs. The sequences thus obtained were aligned using MUSCLE algorithm (Edgar, 2004) and information pertaining to conserved/ variable/ parsimony informative sites, number of transitions, transversions and Indels was obtained after analyzing the sequences. RESULTS AND CONCLUSION: Among the tested barcoding loci, psbA-trnH has proven to be best barcode in authentication of kala zeera as its amplification and sequencing success was high and it showed the presence of polymorphic sites to detect interspecific variation. This barcode could differentiate between safed zeera and kala zeera in a single reaction, simultaneously.


Assuntos
Apiaceae/genética , Cuminum/genética , Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Sequência de Bases , DNA de Plantas/genética , Marcadores Genéticos , Plantas Medicinais/genética , Reprodutibilidade dos Testes
3.
Crit Rev Food Sci Nutr ; 57(6): 1174-1189, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26054861

RESUMO

Adulteration in food has been a concern since the beginning of civilization, as it not only decreases the quality of food products but also results in a number of ill effects on health. Authentic testing of food and adulterant detection of various food products is required for value assessment and to assure consumer protection against fraudulent activities. Through this review we intend to compile different types of adulterations made in different food items, the health risks imposed by these adulterants and detection methods available for them. Concerns about food safety and regulation have ensured the development of various techniques like physical, biochemical/immunological and molecular techniques, for adulterant detection in food. Molecular methods are more preferable when it comes to detection of biological adulterants in food, although physical and biochemical techniques are preferable for detection of other adulterants in food.


Assuntos
Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Análise de Alimentos , Microbiologia de Alimentos , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...