Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134060, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552395

RESUMO

Reverse osmosis (RO)-based treatment of municipal wastewater effluent allows for potable reuse, but this process generates reverse osmosis concentrate (ROC) that needs further treatment before disposal. This study investigated the application of UV-based advanced oxidation processes (AOPs) to degrade nine contaminants of emerging concern (CECs) from real ROC waste streams, using UV-only and UV-AOPs with hydrogen peroxide, free chlorine, and persulfate. Dissolved organic matter (DOM) in ROC was characterized using fluorescence excitation emission matrix data and analyzed by a four-component parallel factor (PARAFAC) analysis model. UV-only treatment showed considerable removal of CECs that displayed high values of quantum yields and molar absorption coefficients. UV-AOP treatment of ROC exhibited heavy scavenging of reactive species during CEC degradation. A probe-based approach established that hydroxyl radical was the dominant reactive species in all UV-AOPs. A kinetic analysis of PARAFAC components of DOM showed that the visible humic-like and protein-like components exhibited the higher reaction kinetics compared to UV humic-like and nutrient-like components. The strong linear correlation of protein-like component and seven of the nine CECs across multiple AOPs indicated that they have similar reactivity, enabling the establishment of chemical-reactivity based surrogates for prediction CEC fate in ROC wastes.

2.
Sci Total Environ ; 835: 155508, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483465

RESUMO

Antibiotics are priority contaminants of emerging concern due to their pseudo-persistence in the environment and contribution to the development of antimicrobial resistance. In solution, antibiotics undergo (de)protonation reactions that affect their UV absorbance and, therefore, photolytic fate in natural and engineered systems. This study employed enhanced spectrophotometric methods to determine the acid dissociation constants (as pKa values) and molar absorption coefficients for 12 fluoroquinolone, 9 sulfonamide, and 7 tetracycline antibiotics of environmental relevance. Molar absorption coefficient heatmaps were generated for all 28 antibiotics at 200-500 nm and pH 1.8-12.2. The data in the heatmaps were deconvoluted to calculate pKa values and specific molar absorption coefficients at each wavelength. All antibiotics had at least one pKa value in the environmentally relevant range of 5.5-8.5, and pKa values were reported for methacycline, moxifloxacin, nadifloxacin, rolitetracycline, sulfadoxine, and sulfapyridine for the first time. Deprotonation of the carboxylic acid associated with pKa,1 (5.5-6.7) exerted the strongest effects on the UV absorbance of fluoroquinolones. For tetracyclines, deprotonation of the tertiary amine at pKa,3 (7.8-10.2) was responsible for major shifts in UV absorbance. Although sulfonamides have conserved pKa sites, no general trends were observed for the molar absorption coefficients. The structural similarity of fluoroquinolones and tetracyclines supported the potential for a class-based approach to identifying molar absorbance as a function of pH. Overall, the reported pKa values and specific molar absorption coefficients will serve as important resources for future studies on antibiotic fate in natural and engineered systems.


Assuntos
Antibacterianos , Fluoroquinolonas , Ácidos , Antibacterianos/química , Sulfanilamida , Sulfonamidas , Tetraciclinas
3.
Water Res ; 204: 117585, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478993

RESUMO

Disposal of reverse osmosis concentrate (ROC) from advanced water purification facilities is a challenge associated with the implementation of reverse osmosis-based treatment of municipal wastewater effluent for potable reuse. In particular, the dissolved organic matter (DOM) present in ROC diminishes the quality of the receiving water upon environmental disposal and affects the toxicity, fate, and transport of organic contaminants. This study investigates UV-based advanced oxidation processes (UV-AOPs) for treating DOM in ROC using a Parallel Factor Analysis (PARAFAC) approach. DOM composition and degradation were tested in UV-only and three UV-AOPs using hydrogen peroxide (H2O2), free chlorine (Cl2), and persulfate (S2O82-). The four-component PARAFAC model consisted of two terrestrial humic-like components (CUVH and CVisH), a wastewater/nutrient tracer component (CNuTr), and a protein-like (tyrosine-like) component (CPrTy). Based on the observed loss in the maximum fluorescence intensity of the components, DOM degradation was determined to be dependent on UV fluence, oxidant dose, and dilution factor of the ROC (i.e., bulk DOM concentration). CVisH was most the photolabile component in the UV-only system, followed by CNuTr, CPrTy, and CUVH, respectively. Furthermore, UV-H2O2 and UV-S2O82- displayed faster overall reaction kinetics compared to UV-Cl2. The degradation trends suggested that CNuTr and CPrTy consisted of chemical moieties that were susceptible to reactive oxygen species (HO•) but not reactive chlorine species; whereas, CVisH was sensitive to all reactive species generated in the three UV-AOPs. Compared to other components, CPrTy was recalcitrant in all treatment scenarios tested. Calculations using chemical probe-based analysis also confirmed these trends in the reactivity of DOM components. The outcomes of this study form a foundation for characterizing ROC reactivity in UV-AOP treatment technologies, to ultimately improve the sustainability of water reuse systems.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Análise Fatorial , Peróxido de Hidrogênio , Osmose , Raios Ultravioleta , Águas Residuárias , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 53(22): 13323-13331, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635452

RESUMO

The tapping of municipal wastewater for potable reuse significantly enhances drinking water supply in drought-stricken regions worldwide. Membrane-based potable reuse treatment trains commonly employ ultraviolet-based advanced oxidation processes (UV-AOPs) to degrade trace organic contaminants in water to produce high-quality recycled water. Hydrogen peroxide (H2O2) is used as the default photo-oxidant. Meanwhile, chloramines, which are added to prevent biofouling, pass through the membranes and impact the treatment efficiency of UV-AOP. Water reuse facilities therefore face the dilemma of optimizing H2O2 (an added photo-oxidant) and chloramines (a carry-over photo-oxidant) doses. Utilizing a uniquely designed pilot-scale reactor and real-time recycled water, we evaluated treatment efficiencies of UV-AOP on six important indicator contaminants, with monochloramine (NH2Cl) and H2O2 as photo-oxidants. Hydroxyl radical (HO•) and reactive chlorine species, such as the chlorine atom (Cl•) and chlorine dimer (Cl2•-), were the major reactive species. Overall, radicals generated from photolysis of NH2Cl alone achieved removal of indicator compounds, which can be further improved by optimizing UV fluence, i.e., the UV dose. Furthermore, the addition of H2O2 enhanced HO• formation and improved contaminant removal. However, the addition of H2O2, when the background NH2Cl level was above 2 mg L-1 (as Cl2), provided limited improvement in treatment efficiency. These trade-offs between chloramine and H2O2 as oxidants, and the recommended optimization of the associated effective UV fluence, are critical for energy-efficient and cost-effective potable reuse to address the challenges of global water scarcity.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Águas Residuárias
5.
Environ Sci Technol ; 51(21): 12310-12320, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28952731

RESUMO

This study examined the photolytic fate of the chlortetracycline (CTC), ciprofloxacin (CIP), roxarsone (ROX), and sulfamethoxazole (SMX) antibiotics in agriculturally relevant matrices. The observed photodegradation kinetics for antibiotics in solutions containing dissolved organic matter (DOM) from three poultry litter extracts was modeled to identify contributions from direct and indirect photolysis. Suwannee River natural organic matter (SRN) was used as a surrogate DOM standard. Poultry litter-derived DOM generated lower concentrations of reactive species compared to SRN. Direct photolysis was the dominant transformation mechanism for CIP, whereas CTC, ROX, and SMX were sensitized by 3DOM* and 1O2. The impacts of agricultural DOM on photodegradation of antibiotics were identified in terms of pseudo-first-order rate constants for formation of reactive species and second-order rate constants for reaction of reactive species with DOM. Solutions containing poultry litter-derived DOM generated similar levels of 3DOM* and 1O2, enhancing degradation of CTC, ROX, and SMX. The reactivity of SMX was markedly different in solutions containing poultry litter DOM compared to solutions with SRN, indicating that the photolytic fate of select antibiotics varies for agricultural and surface water matrices. As the majority of antibiotics are consumed by animals, these findings provide new insight into agriculturally relevant transformation mechanisms and kinetics.


Assuntos
Antibacterianos , Fotólise , Poluentes Químicos da Água , Animais , Aves Domésticas , Sulfametoxazol
6.
Environ Sci Technol ; 51(14): 8036-8047, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28603977

RESUMO

Parallel factor analysis (PARAFAC) applied to fluorescence excitation emission matrices (EEMs) allows quantitative assessment of the composition of fluorescent dissolved organic matter (DOM). In this study, we fit a four-component EEM-PARAFAC model to characterize DOM extracted from poultry litter. The data set included fluorescence EEMs from 291 untreated, irradiated (253.7 nm, 310-410 nm), and oxidized (UV-H2O2, ozone) poultry litter extracts. The four components were identified as microbial humic-, terrestrial humic-, tyrosine-, and tryptophan-like fluorescent signatures. The Tucker's congruence coefficients for components from the global (i.e., aggregated sample set) model and local (i.e., single poultry litter source) models were greater than 0.99, suggesting that the global EEM-PARAFAC model may be suitable to study poultry litter DOM from individual sources. In general, the transformation trends of the four fluorescence components were comparable for all poultry litter sources tested. For irradiation at 253.7 nm, ozonation, and UV-H2O2 advanced oxidation, transformation of the humic-like components was slower than that of the tryptophan-like component. The opposite trend was observed for irradiation at 310-410 nm, due to differences in UV absorbance properties of components. Compared to the other EEM-PARAFAC components, the tyrosine-like component was fairly recalcitrant in irradiation and oxidation processes. This novel application of EEM-PARAFAC modeling provides insight into the composition and fate of agricultural DOM in natural and engineered systems.


Assuntos
Análise Fatorial , Substâncias Húmicas , Aves Domésticas , Animais , Fezes/química , Peróxido de Hidrogênio , Espectrometria de Fluorescência
7.
Environ Sci Technol ; 50(17): 9533-42, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27479003

RESUMO

Three fluoroquinolone-to-fluoroquinolone antibiotic transformations were monitored during UV-C irradiation processes. In particular, the following reactions were observed: enrofloxacin-to-ciprofloxacin, difloxacin-to-sarafloxacin, and pefloxacin-to-norfloxacin. The apparent molar absorptivity and fluence-based pseudo-first-order rate constants for transformation of the six fluoroquinolones by direct photolysis at 253.7 nm were determined for the pH 2-12 range. These parameters were deconvoluted to calculate specific molar absorptivity and fluence-based rate constants for cationic, zwitterionic, and anionic fluoroquinolone species. For a typical disinfection fluence of 40 mJ/cm(2), the apparent transformation efficiencies were inflated by 2-8% when fluoroquinolone products were not considered; moreover, the overall transformation efficiencies at 400 mJ/cm(2) varied by up to 40% depending on pH. The three product antibiotics, namely ciprofloxacin, sarafloxacin, and norfloxacin, were found to be equally or more potent than the parent fluoroquinolones using an Escherichia coli-based assay. UV treatment of a solution containing difloxacin was found to increase antimicrobial activity due to formation of sarafloxacin. These results highlight the importance of considering antibiotic-to-antibiotic transformations in UV-based processes.


Assuntos
Antibacterianos , Fotólise , Ciprofloxacina , Fluoroquinolonas , Cinética , Norfloxacino
8.
PDA J Pharm Sci Technol ; 69(2): 215-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25868988

RESUMO

Pharmaceuticals and other xenobiotic molecules are being increasingly detected in drinking water, food crops, and breast milk. This issue represents a novel toxicological concern, especially for sensitive populations like pregnant women and breastfeeding infants. This commentary calls for more interdisciplinary research efforts focused on elucidating the transfer of contaminants of emerging concern from mother to child, as well as the relevant toxicological impacts on the child. The need for more tangible efforts to reduce pharmaceutical loads in environmental systems is also highlighted.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Xenobióticos/toxicidade , Aleitamento Materno/efeitos adversos , Exposição Ambiental/prevenção & controle , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Feminino , Humanos , Lactente , Leite Humano/química , Gravidez , Populações Vulneráveis , Poluentes Químicos da Água/toxicidade , Xenobióticos/química
9.
Environ Int ; 75: 68-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461415

RESUMO

Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste.


Assuntos
Arsênio/química , Pisos e Cobertura de Pisos , Água Subterrânea/química , Abrigo para Animais , Aves Domésticas , Poluentes Químicos da Água/química , Animais
10.
Water Res ; 70: 74-85, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25514660

RESUMO

Roxarsone (ROX) and nitarsone (NIT) are used as additives in animal feeding operations and have been detected in animal manure, agricultural retention ponds, and adjacent surface waters. This work investigates treatment of organoarsenicals using UV-based treatment processes, namely UV irradiation at 253.7 nm and the UV-H2O2 advanced oxidation process. The apparent molar absorptivity was mapped for ROX and NIT across pH and wavelength. For UV irradiation at 253.7 nm, the fluence-based pseudo-first order rate constant (kp(')) and effective quantum yield (Φ) for ROX were 8.10-29.7 × 10(-5) cm(2)/mJ and 2.34-8.37 × 10(-3) mol/E, respectively; the corresponding constants were slightly lower for NIT. The observed rate constants are higher during advanced oxidation (e.g., kp,ROX(')=3.92(±0.19)-217(±48) × 10(-4) cm(2)/mJ). Second order rate constants for organoarsenical transformation by hydroxyl radicals were determined to be 3.40(±0.45) × 10(9) and 8.28(±0.49) × 10(8) M(-1)s(-1) for ROX and NIT, respectively. Solution pH and nitrate concentration did not significantly impact ROX transformation during advanced oxidation; however, bicarbonate and dissolved organic matter from chicken litter reduced ROX transformation through hydroxyl radical scavenging. Inorganic arsenic was the predominant transformation product of ROX during UV-H2O2 treatment.


Assuntos
Arsenicais/química , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Roxarsona/química , Raios Ultravioleta , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...