Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1082(2): 220-9, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16035365

RESUMO

Addition of a small amount of polar solvent (i.e., modifier) to CO2 in packed column supercritical fluid chromatography (SFC) has shown major improvements in both polar analyte solubility and interaction of the polar analyte with the stationary phase. Recently, the addition of an ionic component (i.e., additive) to the primary modifier by one of us has been shown to extend even further the application of SFC to polar analytes. In this work, the effect of various ionic additives on the elution of ionic compounds, such as sodium 4-dodecylbenzene sulfonate and sodium 4-octylbenene sulfonate, has been studied. The additives were lithium acetate, ammonium acetate, tetramethylammonium acetate, tetrabutylammonium acetate, and ammonium chloride dissolved in methanol. Three stationary phases with different degrees of deactivation were considered: conventional cyanopropyl, deltabond cyanopropyl, and bare silica. The effect of additive concentration and additive functionality on analyte retention was investigated. Sodium 4-dodecylbenzene sulfonate was successfully eluted using all the additives with good peak shape under isocratic/isobaric/isothermal conditions. Different additives, however, yielded different retention times and in some cases different peak shapes.


Assuntos
Benzenossulfonatos/isolamento & purificação , Cromatografia com Fluido Supercrítico/métodos , Solventes/química , Acetatos/química , Espectrometria de Massas , Metanol/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta
2.
J Magn Reson ; 151(2): 253-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11531347

RESUMO

In this paper, we report our initial results on studying magnetically aligned phospholipid bilayers (bicelles) at high magnetic fields (approximately 3.4 T) with electron paramagnetic resonance (EPR) spectroscopy at 95 GHz (W-band). In order to characterize this system for W-band EPR studies, we have utilized the nitroxide spin probe 3beta-doxyl-5alpha-cholestane to demonstrate the effects of macroscopic bilayer alignment. At W-band due to the increase in magnetic field strength (when compared to X-band studies at 9.5 GHz) (S. M. Garber et al., J. Am. Chem. Soc. 121, 3240-3241 (1999)), we were able to examine magnetically aligned phospholipid bilayers at two orientations with the bilayer normal oriented either perpendicular or parallel (upon addition of YbCl3) with respect to the direction of the static magnetic field. Additionally, at a magnetic field of 3.4 T (g=2 resonance at W-band), we were able to study the parallel alignment with a lower concentration of Yb3+, thereby eliminating the possible unwanted effects associated with lanthanide-protein interactions and paramagnetic shifts and/or line broadening induced by the lanthanide ions. The development of this new spin label alignment technique will open up a whole new area of investigation for phospholipid bilayer systems and membrane protein EPR studies at high magnetic fields.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Bicamadas Lipídicas/química , Fosfolipídeos/química , Dimiristoilfosfatidilcolina/química , Fosfatidilcolinas/química , Processamento de Sinais Assistido por Computador , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...