Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 189: 109888, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32979995

RESUMO

BACKGROUND: Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro. METHODS: We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM2.5, PM < 40 µm, black carbon, endotoxin, and PM metal and bacterial content). We then challenged HAE cells with PM, assessing its cytotoxicity to small-airway cells (A549) and its effect on: transepithelial conductance and macromolecule permeability (NuLi cells), and antimicrobial activity (using airway surface liquid, ASL, from primary HAE cells). RESULTS: Lung function was impaired in cooks using both fuel-types. 60% of participants in both fuel-types had respiratory restriction (post bronchodilator FEV1/FVC>90). The remaining 40% in the LPG group had normal spirometry (post FEV1/FVC = 80-90), while only 10% of participants in the biomass group had normal spirometry, and the remaining biomass cooks (30%) had respiratory obstruction (post FEV1/FVC<80). Significant differences were found in environmental parameters, with biomass kitchens containing greater PM2.5, black carbon, zirconium, arsenic, iron, vanadium, and endotoxin concentrations. LPG kitchens tended to have more bacteria (p = 0.14), and LPG kitchen PM had greater sulphur concentrations (p = 0.02). In vitro, PM induced cytotoxicity in HAE A549 cells in a dose-dependent manner, however the effect was minimal and there were no differences between fuel-types. PM from homes of participants with a restrictive physiology increased electrical conductance of NuLi HAE cells (p = 0.06) and decreased macromolar permeability (p ≤ 0.05), while PM from homes of those with respiratory obstruction tended to increase electrical conductance (p = 0.20) and permeability (p = 0.07). PM from homes of participants with normal spirometry did not affect conductance or permeability. PM from all homes tended to inhibit antimicrobial activity of primary HAE cell airway surface liquid (p = 0.06). CONCLUSIONS: Biomass cooks had airway obstruction, and significantly greater concentrations of kitchen environmental contaminants than LPG kitchens. PM from homes of participants with respiratory restriction and obstruction altered airway cell barrier function, elucidating mechanisms potentially responsible for respiratory phenotypes observed in biomass cooks.


Assuntos
Poluição do Ar em Ambientes Fechados , Petróleo , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Biomassa , Culinária , Feminino , Humanos , Índia , Pulmão/química , Material Particulado/análise , Material Particulado/toxicidade
2.
J Expo Sci Environ Epidemiol ; 30(5): 778-784, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461549

RESUMO

BACKGROUND: Americans spend most of their time indoors. Indoor particulate matter (PM) 2.5 µm and smaller (PM2.5) concentrations often exceed ambient concentrations. Therefore, we tested whether the use of an air purifying device (electrostatic precipitator, ESP) could reduce PM2.5 in homes of smokers with and without respiratory exacerbations, compared with baseline. METHODS: We assessed PM2.5 concentrations in homes of subjects with and without a recent (≤3 years) history of respiratory exacerbation. We compared PM2.5 concentrations during 1 month of ESP use with those during 1 month without ESP use. RESULTS: Our study included 19 subjects (53-80 years old), nine with a history of respiratory exacerbation. Geometric mean (GM) PM2.5 and median GM daily peak PM2.5 were significantly lower during ESP deployment compared with the equivalent time-period without the ESP (GSD = 0.50 and 0.37 µg/m3, respectively, p < 0.001). PM2.5 in homes of respiratory exacerbators tended (p < 0.14) to be higher than PM2.5 in homes of those without a history of respiratory exacerbation. CONCLUSIONS: Subjects with a history of respiratory exacerbation tended to have higher mean, median, and mean peak PM2.5 concentrations compared with homes of subjects without a history of exacerbations. The ESP intervention reduced in-home PM2.5 concentrations, demonstrating its utility in reducing indoor exposures. NOVELTY OF STUDY: Our work characterizes PM air pollution concentrations in homes of study subjects with and without respiratory exacerbations. We demonstrate that PM concentrations tend to be higher in homes of participants with respiratory exacerbations, and that the use of an inexpensive air purifier resulted in significantly lower daily average PM concentrations than when the purifier was not present. Our results provide a helpful intervention strategy for purifying indoor air and may be useful for susceptible populations.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Iowa , Pessoa de Meia-Idade , Material Particulado/análise , Fumantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...