Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 30952, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484849

RESUMO

We have found that the addition of tin nanoparticles to a silicon-based anode provides dramatic improvements in performance in terms of both charge capacity and cycling stability. Using a simple procedure and off-the-shelf additives and precursors, we developed a structure in which the tin nanoparticles are segregated at the interface between the silicon-containing active layer and the solid electrolyte interface. Even a minor addition of tin, as small as ∼2% by weight, results in a significant decrease in the anode resistance, as confirmed by electrochemical impedance spectroscopy. This leads to a decrease in charge transfer resistance, which prevents the formation of electrically inactive "dead spots" in the anode structure and enables the effective participation of silicon in the lithiation reaction.

2.
Chem Commun (Camb) ; 50(77): 11366-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25119262

RESUMO

We demonstrate that copper-zinc-tin-sulphide nanoplatelets can be directly grown onto a molybdenum-coated substrate using spray pyrolysis starting from a mixture of metal thiocarbamates precursors. The structure and phase purity of the nanoplatelets is discussed in detail.

3.
Nano Lett ; 5(4): 655-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15826104

RESUMO

Light emission from silicon based on quantum confinement in nanoscale structures has sparked intense research into this field ever since its discovery about 15 years ago. A barrier to the widespread utilization of luminescent silicon nanocrystals in such diverse application areas as optoelectronics, solid-state lighting for general illumination, or fluorescent agents for biological applications has been the lack of a simple, high-yield synthesis approach. Here we report a scaleable single-step synthesis process for luminescent silicon nanocrystals based on a low-pressure nonthermal plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...