Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 96(3): 566-77, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485285

RESUMO

PURPOSE: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). METHODS AND MATERIALS: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. RESULTS: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. CONCLUSIONS: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted proteins were identified in urinary and serum exosomes. Together, these data showed the feasibility of defining biomarkers that could elucidate tissue-associated and systemic response caused by high-dose ionizing radiation. This is the first report using an exosome proteomics approach to identify radiation signatures.


Assuntos
Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/urina , Bioensaio/métodos , Exossomos/química , Proteoma/análise , Exposição à Radiação/análise , Síndrome Aguda da Radiação/diagnóstico , Animais , Biomarcadores/sangue , Biomarcadores/urina , Estudos de Viabilidade , Camundongos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total/métodos , Fluxo de Trabalho
2.
Mol Syst Biol ; 4: 169, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18277385

RESUMO

The computational identification of oncogenic lesions is still a key open problem in cancer biology. Although several methods have been proposed, they fail to model how such events are mediated by the network of molecular interactions in the cell. In this paper, we introduce a systems biology approach, based on the analysis of molecular interactions that become dysregulated in specific tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively extending and complementing existing methods. Furthermore, we show that the same approach is highly effective in identifying the targets of molecular perturbations in a human cellular context, a task virtually unaddressed by existing computational methods. To identify interactions that are dysregulated in three distinct non-Hodgkin's lymphomas and in samples perturbed with CD40 ligand, we use the B-cell interactome (BCI), a genome-wide compendium of human B-cell molecular interactions, in combination with a large set of microarray expression profiles. The method consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches in 3 of 4 cases.


Assuntos
Redes Reguladoras de Genes/genética , Linfoma de Células B/genética , Redes e Vias Metabólicas/genética , Oncogenes , Biologia de Sistemas , Algoritmos , Benchmarking , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Linfoma de Células B/classificação , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...