Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 58(11): 4749-70, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25953419

RESUMO

CYP11B2, the aldosterone synthase, and CYP11B1, the cortisol synthase, are two highly homologous enzymes implicated in a range of cardiovascular and metabolic diseases. We have previously reported the discovery of LCI699, a dual CYP11B2 and CYP11B1 inhibitor that has provided clinical validation for the lowering of plasma aldosterone as a viable approach to modulate blood pressure in humans, as well normalization of urinary cortisol in Cushing's disease patients. We now report novel series of aldosterone synthase inhibitors with single-digit nanomolar cellular potency and excellent physicochemical properties. Structure-activity relationships and optimization of their oral bioavailability are presented. An illustration of the impact of the age of preclinical models on pharmacokinetic properties is also highlighted. Similar biochemical potency was generally observed against CYP11B2 and CYP11B1, although emerging structure-selectivity relationships were noted leading to more CYP11B1-selective analogs.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Aldosterona/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Corticosterona/farmacologia , Inibidores Enzimáticos/química , Imidazóis/farmacologia , Masculino , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Estrutura Molecular , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual
2.
J Med Chem ; 52(19): 6142-52, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19746978

RESUMO

Type 2 diabetes is a polygenic disease which afflicts nearly 200 million people worldwide and is expected to increase to near epidemic levels over the next 10-15 years. Glucokinase (GK) activators are currently under investigation by a number of pharmaceutical companies with only a few reaching early clinical evaluation. A GK activator has the promise of potentially affecting both the beta-cells of the pancreas, by improving glucose sensitive insulin secretion, as well as the liver, by reducing uncontrolled glucose output and restoring post-prandial glucose uptake and storage as glycogen. Herein, we report our efforts on a sulfonamide chemotype with the aim to generate liver selective GK activators which culminated in the discovery of 3-cyclopentyl-N-(5-methoxy-thiazolo[5,4-b]pyridin-2-yl)-2-[4-(4-methyl-piperazine-1-sulfonyl)-phenyl]-propionamide (17c). This compound activated the GK enzyme (alphaK(a) = 39 nM) in vitro at low nanomolar concentrations and significantly reduced glucose levels during an oral glucose tolerance test in normal mice.


Assuntos
Glucoquinase/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Relação Estrutura-Atividade , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...