Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958060

RESUMO

Monitoring the genetic variance of traits is a key priority to ensure the sustainability of breeding programmes in populations under directional selection, since directional selection can decrease genetic variation over time. Studies monitoring changes in genetic variation have typically used long-term data from small experimental populations selected for a handful of traits. Here, we used a large dataset from a commercial breeding line spread over a period of twenty-three years. A total of 2,059,869 records and 2,062,112 animals in the pedigree were used for the estimations of variance components for the traits: body weight (BWT; 2,059,869 records) and hen-housed egg production (HHP; 45,939 records). Data were analysed with three estimation approaches: sliding overlapping windows, under frequentist (restricted maximum likelihood (REML)) and Bayesian (Gibbs sampling) methods; expected variances using coefficients of the full relationship matrix; and a "double trait covariances" analysis by computing correlations and covariances between the same trait in two distinct consecutive windows. The genetic variance showed marginal fluctuations in its estimation over time. Whereas genetic, maternal permanent environmental, and residual variances were similar for BWT in both the REML and Gibbs methods, variance components when using the Gibbs method for HHP were smaller than the variances estimated when using REML. Large data amounts were needed to estimate variance components and detect their changes. For Gibbs (REML), the changes in genetic variance from 1999-2001 to 2020-2022 were 82.29 to 93.75 (82.84 to 93.68) for BWT and 76.68 to 95.67 (98.42 to 109.04) for HHP. Heritability presented a similar pattern as the genetic variance estimation, changing from 0.32 to 0.36 (0.32 to 0.36) for BWT and 0.16 to 0.15 (0.21 to 0.18) for HHP. On the whole, genetic parameters tended slightly to increase over time. The expected variance estimates were lower than the estimates when using overlapping windows. That indicates the low effect of the drift-selection process on the genetic variance, or likely, the presence of genetic variation sources compensating for the loss. Double trait covariance analysis confirmed the maintenance of variances over time, presenting genetic correlations >0.86 for BWT and >0.82 for HHP. Monitoring genetic variance in broiler breeding programmes is important to sustain genetic progress. Although the genetic variances of both traits fluctuated over time, in some windows, particularly between 2003 and 2020, increasing trends were observed, which warrants further research on the impact of other factors, such as novel mutations, operating on the dynamics of genetic variance.

2.
Sci Rep ; 11(1): 7441, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811218

RESUMO

The objective of the present study was to discover the genetic variants, functional candidate genes, biological processes and molecular functions underlying the negative genetic correlation observed between body weight (BW) and egg number (EN) traits in female broilers. To this end, first a bivariate genome-wide association and second stepwise conditional-joint analyses were performed using 2586 female broilers and 240 k autosomal SNPs. The aforementioned analyses resulted in a total number of 49 independent cross-phenotype (CP) significant SNPs with 35 independent markers showing antagonistic action i.e., positive effects on one trait and negative effects on the other trait. A number of 33 independent CP SNPs were located within 26 and 14 protein coding and long non-coding RNA genes, respectively. Furthermore, 26 independent markers were situated within 44 reported QTLs, most of them related to growth traits. Investigation of the functional role of protein coding genes via pathway and gene ontology analyses highlighted four candidates (CPEB3, ACVR1, MAST2 and CACNA1H) as most plausible pleiotropic genes for the traits under study. Three candidates (CPEB3, MAST2 and CACNA1H) were associated with antagonistic pleiotropy, while ACVR1 with synergistic pleiotropic action. Current results provide a novel insight into the biological mechanism of the genetic trade-off between growth and reproduction, in broilers.


Assuntos
Peso Corporal/genética , Galinhas/genética , Pleiotropia Genética , Óvulo/citologia , Locos de Características Quantitativas/genética , Animais , Feminino , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética
3.
BMC Genomics ; 21(1): 512, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709222

RESUMO

BACKGROUND: Aim of the present study was first to identify genetic variants associated with egg number (EN) in female broilers, second to describe the mode of their gene action (additive and/or dominant) and third to provide a list with implicated candidate genes for the trait. A number of 2586 female broilers genotyped with the high density (~ 600 k) SNP array and with records on EN (mean = 132.4 eggs, SD = 29.8 eggs) were used. Data were analyzed with application of additive and dominant multi-locus mixed models. RESULTS: A number of 7 additive, 4 dominant and 6 additive plus dominant marker-trait significant associations were detected. A total number of 57 positional candidate genes were detected within 50 kb downstream and upstream flanking regions of the 17 significant markers. Functional enrichment analysis pinpointed two genes (BHLHE40 and CRTC1) to be involved in the 'entrainment of circadian clock by photoperiod' biological process. Gene prioritization analysis of the positional candidate genes identified 10 top ranked genes (GDF15, BHLHE40, JUND, GDF3, COMP, ITPR1, ELF3, ELL, CRLF1 and IFI30). Seven prioritized genes (GDF15, BHLHE40, JUND, GDF3, COMP, ELF3, CRTC1) have documented functional relevance to reproduction, while two more prioritized genes (ITPR1 and ELL) are reported to be related to egg quality in chickens. CONCLUSIONS: Present results have shown that detailed exploration of phenotype-marker associations can disclose the mode of action of genetic variants and help in identifying causative genes associated with reproductive traits in the species.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Ovos , Feminino , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Sci Rep ; 9(1): 9125, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235723

RESUMO

Aim of the present study was to investigate whether body weight (BW) in broilers is associated with functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the high density SNP array. The next step was to search for positional candidate genes and QTLs within strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network was then constructed and community structure analysis was performed. Finally, functional enrichment analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional candidate genes were identified in strong LD genomic regions around 11 genome-wide significant markers. 428 of the positional candidate genes were located within growth related QTLs. Community structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular genes participated in developmental processes such as skeletal system development. An additional number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. Taken together, current results suggested a total number of 66 genes as most plausible functional candidates for the trait examined.


Assuntos
Peso Corporal , Galinhas/anatomia & histologia , Animais , Galinhas/genética , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...