Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110015

RESUMO

The investigation of the course of the Boudouard reaction and methane cracking was performed over nickel catalysts based on oxides of calcium, aluminum, and magnesium. The catalytic samples were synthesized by the impregnation method. The physicochemical characteristics of the catalysts were determined using atomic adsorption spectroscopy (AAS), Brunauer-Emmett-Teller method analysis (BET), temperature-programmed desorption of ammonia and carbon dioxide (NH3- and CO2-TPD), and temperature-programmed reduction (TPR). Qualitative and quantitative identification of formed carbon deposits after the processes were carried out using total organic carbon analysis (TOC), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The selected temperatures for the Boudouard reaction and methane cracking (450 and 700 °C, respectively) were found to be optimal for the successful formation of graphite-like carbon species over these catalysts. It was revealed that the activity of catalytic systems during each reaction is directly related to the number of weakly interacted nickel particles with catalyst support. Results of the given research provide insight into the mechanism of carbon deposit formation and the role of the catalyst support in this process, as well as the mechanism of the Boudouard reaction.

2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674490

RESUMO

This work investigated the influence of the catalytic support precursor on the activity of nickel catalysts 20%Ni/5%La2O3-95%Al2O3 in the mixed methane reforming process. The activity tests were carried out at a temperature of 750 °C. The research showed that the catalyst prepared from the precursor containing chloride exhibited very low conversions of methane and carbon dioxide. The poisoned catalyst system before and after the calcination process was subjected to Temperature Programmed Surface Reaction tests to determine whether the thermal treatment causes a decrease in the amount of chlorine in the system. To determine the decomposition temperature of the LaCl3 precursor and the nickel chloride NiCl2 compound, the samples were analyzed by Thermogravimetry. Finally, the catalytic samples were tested by Time-of-Flight Secondary Ion Mass Spectrometry analysis to confirm the presence of nickel-chlorine bonds on the surface of the catalytic system.


Assuntos
Lantânio , Níquel , Níquel/química , Metano/química , Cloro , Dióxido de Carbono/química
3.
Nanotechnology ; 33(23)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289768

RESUMO

In this paper, we are reporting on the fabrication of a porous silicon/Au and silicon filament/Au using the two-step Au-assisted chemical etching of p-type Si with a specific resistivity of 0.01, 1, and 12 Ω·cm when varying the Au deposition times. The structure analysis results show that with an increasing Au deposition time of up to 7 min, the thickness of the porous Si layer increases for the same etching duration (60 min), and the morphology of the layer changes from porous to filamentary. This paper shows that the uniform macro-porous layers with a thickness of 125.5-171.2µm and a specific surface area of the mesopore sidewalls of 142.5-182 m2·g-1are formed on the Si with a specific resistivity of 0.01 Ω·cm. The gradient macro-porous layers with a thickness of 220-260µm and 210-290µm, the specific surface area of the mesopore sidewalls of 3.7-21.7 m2·g-1and 17-29 m2·g-1are formed on the silicon with a specific resistivity of 1 and 12 Ω·cm, respectively. The por-Si/Au has excellent low-temperature electro oxidation performance with ethanol, the activity of ethanol oxidation is mainly due to the synergistic effect of the Au nanoparticles and porous Si. The formation mechanism of the uniform and gradient macro-porous layers and ethanol electro-oxidation on the porous/filament silicon, decorated with Au nanoparticles, was established. The por-Si/Au structures with perpendicularly oriented pores, a high por-Si layer thickness, and a low mono-Si layer thickness (with a specific resistivity of 1 Ω·cm) are optimal for an effective ethanol electro-oxidation, which has been confirmed with chronoamperometry measurements.

4.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947174

RESUMO

This work investigates the effect of the addition of Ru and CeO2 on the process of gasification of carbon deposits formed on the surface of a nickel catalyst during the mixed methane reforming process. Activity studies of the mixed methane reforming process were carried out on (Ru)-Ni/CeO2-Al2O3 catalysts at the temperature of 650-750 °C. The ruthenium-promoted catalyst exhibited the highest activity. Carbonized post-reaction catalyst samples were tested with the TOC technique to investigate the carbonization state of the samples. The bimetallic catalyst had the lowest amount of carbon deposit (1.5%) after reaction at 750 °C. The reactivity of the carbon species was assessed in mixtures of oxygen, hydrogen, carbon dioxide, and water. Regardless of the gasifying agent used, the carbon deposit was removed from the surface of the catalytic system. The overall mechanism of mixed methane reforming over Ru and CeO2 was shown.

5.
Nanotechnology ; 33(5)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670208

RESUMO

Titania (TiO2) is a widely used semiconductor for the photocatalytic decomposition of organic impurities in air, water and the conversion of CO2into hydrocarbon fuel precursors. TiO2in the form of nanotubes arrays is the most attractive for practical use because of the morphological advantages providing more favorable diffusion of photocatalytic reaction products and a low recombination rate of photogenerated electrons and holes. We have carried out a comparative study of the photocatalytic activity of gas-phase conversion of CO2to hydrocarbon products and the defect properties of multi-walled and single-walled arrays of TiO2nanotubes. Methanol and methane have been detected in the CO2photoreduction process. The photocatalytic evolution rate of multi-walled TiO2nanotubes is twice as fast for methane as for single-walled TiO2nanotubes after four hours of irradiation and four times faster for methanol. The type and features of the structural defects have been investigated by EPR spectroscopy. For the first time, it has been shown that Ti3+/oxygen vacancy centers are mainly located inside the outer layer of nanotubes, while carbon dangling bonds have been observed directly on the surface of the inner layer. Carbon defects have been found to be the centers of adsorption and accumulation of photoinduced charge carriers. The results are entirely new; they clarify the role of different types of defects in the photocatalytic conversion of CO2to hydrocarbon compounds and show good prospects for applying TiO2nanotube arrays.

6.
Materials (Basel) ; 14(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200900

RESUMO

In the present work, for the first time, the possibility of formation of CrAl2O4 was shown from the equimolar mixture of co-precipitated Al2O3 and Cr2O3 oxides under a reductive environment. The crystallographic properties of the formed compound were calculated using the DICVOL procedure. It was determined that it has a cubic crystal structure with space group Fd-3m and a unit cell parameter equal to 8.22(3) Å. The formed CrAl2O4 is not stable under ambient conditions and easily undergoes oxidation to α-Al2O3 and α-Cr2O3. The overall sequence of the phase transformations of co-precipitated oxides leading to the formation of spinel structure is proposed.

7.
Materials (Basel) ; 15(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009285

RESUMO

In one of our previously published articles, we reported the synthesis, spectroscopic, thermal, and catalytic properties of four new M(II) acetate (where M = Co, Ni, Cu, Zn) complexes with imidazole. Presented compounds exhibited activity in the reaction on catalytic oxidation of styrene. In this study we have synthesized and investigated properties of analogous compounds, however using formates or propionates of mentioned metal cations instead of acetates. Such an approach allowed us to draw valuable conclusions concerning the relationship between the carbon chain length and catalytic activity, which is an important factor for catalyst modeling. Synthesized compounds have been thoroughly investigated using appropriate analytic techniques: AAS (Atomic Absorption Spectrometry), FTIR (Fourier-Transform Infrared Spectroscopy), and TGA (Thermogravimetric Analysis). Catalytic properties have been studied under the same previous conditions, using GC-FID (GC-chromatograph equipped with FID detector).

8.
Materials (Basel) ; 13(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698342

RESUMO

Four solid compounds with formulae: Co(OAc)2(Im)·H2O (I), Ni(OAc)2(Im)1.5·2H2O (II), Cu2(OAc)4(Im) (III) and Zn(OAc)2(Im)·H2O (IV) (where: Im = 1H-Imidazole) were prepared and characterized by chemical and elemental analysis, powder X-ray diffraction patterns and FTIR spectroscopy. Catalytic properties of each complex for styrene oxidation reaction were investigated. Furthermore, thermal properties of compounds were studied using the TG-DTG and DSC techniques under dry air atmosphere. Additionally, volatile thermal decomposition and fragmentation products were also investigated using the TG-FTIR spectra in air.

9.
Nanomaterials (Basel) ; 10(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326324

RESUMO

Evolution of the crystal structure of ceramics BiFeO3-BaTiO3 across the morphotropic phase boundary was analyzed using the results of macroscopic measuring techniques such as X-ray diffraction, differential scanning calorimetry, and differential thermal analysis, as well as the data obtained by local scale methods of scanning probe microscopy. The obtained results allowed to specify the concentration and temperature regions of the single phase and phase coexistent regions as well as to clarify a modification of the structural parameters across the rhombohedral-cubic phase boundary. The structural data show unexpected strengthening of structural distortion specific for the rhombohedral phase, which occurs upon dopant concentration and temperature-driven phase transitions to the cubic phase. The obtained results point to the non-monotonous character of the phase evolution, which is specific for metastable phases. The compounds with metastable structural state are characterized by enhanced sensitivity to external stimuli, which significantly expands the perspectives of their particular use.

10.
Micromachines (Basel) ; 10(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842302

RESUMO

The formation of porous silicon by Pd nanoparticles-assisted chemical etching of single-crystal Si with resistivity ρ = 0.01 Ω·cm at 25 °C, 50 °C and 75 °C in HF/H2O2/H2O solution was studied. Porous layers of silicon were studied by optical and scanning electron microscopy, and gravimetric analysis. It is shown that por-Si, formed by Pd nanoparticles-assisted chemical etching, has the property of ethanol electrooxidation. The chromatographic analysis of ethanol electrooxidation products on por-Si/Pd shows that the main products are CO2, CH4, H2, CO, O2, acetaldehyde (CHO)+, methanol and water vapor. The mass activity of the por-Si/Pd system was investigated by measuring the short-circuit current in ethanol solutions. The influence of the thickness of porous silicon and wafer on the mass activity and the charge measured during ethanol electrooxidation was established. Additionally, the mechanism of charge transport during ethanol electrooxidation was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...