Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Water Sci Technol ; 84(1): 225-236, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34280166

RESUMO

The concerns regarding the occurrence of pharmaceuticals in wastewater treatment plants have increased in the last decades. Gatifloxacin (GAT), the fourth generation of fluoroquinolones, has been widely used to treat both Gram-positive and Gram-negative bacteria and has a limited metabolization. The present study aimed to evaluate ozonation as a technique to degrade GAT. An exchange A UHPLC-MS/MS by an UHPLC-MS/MS method was used to quantify the residual of GAT and to assess its degradation products. The removal efficiency was higher under alkaline conditions (pH = 10), reaching up to 99% of GAT after 4 min. It was also observed that the first ozone attack on the GAT molecule was through the carboxylic group. In contrast, under acid conditions (pH = 3), the ozone attack was first to the piperazinyl ring. The antimicrobial activity was evaluated using Escherichia coli and Bacillus subtilis as test organisms, and it was observed that the residual activity reduced most under alkaline conditions. In contrast, the best condition to remove the residual toxicity evaluated for the marine bacteria V. fischeri was the acidic one. Due to this, ozonation seemed to be an exciting process to remove GAT in aqueous media.


Assuntos
Ozônio , Poluentes Químicos da Água , Antibacterianos , Gatifloxacina , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Pollut Res Int ; 28(30): 40460-40473, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33630259

RESUMO

In a post-pandemic scenario, indoor air monitoring may be required seeking to safeguard public health, and therefore well-defined methods, protocols, and equipment play an important role. Considering the COVID-19 pandemic, this manuscript presents a literature review on indoor air sampling methods to detect viruses, especially SARS-CoV-2. The review was conducted using the following online databases: Web of Science, Science Direct, and PubMed, and the Boolean operators "AND" and "OR" to combine the following keywords: air sampler, coronavirus, COVID-19, indoor, and SARS-CoV-2. This review included 25 published papers reporting sampling and detection methods for SARS-CoV-2 in indoor environments. Most of the papers focused on sampling and analysis of viruses in aerosols present in contaminated areas and potential transmission to adjacent areas. Negative results were found in 10 studies, while 15 papers showed positive results in at least one sample. Overall, papers report several sampling devices and methods for SARS-CoV-2 detection, using different approaches for distance, height from the floor, flow rates, and sampled air volumes. Regarding the efficacy of each mechanism as measured by the percentage of investigations with positive samples, the literature review indicates that solid impactors are more effective than liquid impactors, or filters, and the combination of various methods may be recommended. As a final remark, determining the sampling method is not a trivial task, as the samplers and the environment influence the presence and viability of viruses in the samples, and thus a case-by-case assessment is required for the selection of sampling systems.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Humanos , Pandemias , SARS-CoV-2
3.
Artigo em Inglês | MEDLINE | ID: mdl-33498745

RESUMO

Sulfaquinoxaline (SQX) has been detected in environmental water samples, where its side effects are still unknown. To the best of our knowledge, its oxidation by Fenton and photo-Fenton processes has not been previously reported. In this study, SQX oxidation, mineralization, and toxicity (Escherichia coli and Staphylococcus aureus bacteria) were evaluated at two different setups: laboratory bench (2 L) and pilot plant (15 L). The experimental design was used to assess the influence of the presence or absence of radiation source, as well as different H2O2 concentrations (94.1 to 261.9 mg L-1). The experimental conditions of both setups were: SQX = 25 mg L-1, Fe(II) = 10 mg L-1, pH 2.8 ± 0.1. Fenton and photo-Fenton were suitable for SQX oxidation and experiments resulted in higher SQX mineralization than reported in the literature. For both setups, the best process was the photo-Fenton (178.0 mg L-1 H2O2), for which over 90% of SQX was removed, over 50% mineralization, and bacterial growth inhibition less than 13%. In both set-ups, the presence or absence of radiation was equally important for sulfaquinoxaline oxidation; however, the degradation rates at the pilot plant were between two to four times higher than the obtained at the laboratory bench.


Assuntos
Sulfaquinoxalina , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-31328643

RESUMO

The herbicide amicarbazone (AMZ), which appeared as a possible alternative to atrazine, presents moderate environmental persistence and is unlikely to be removed by conventional water treatment techniques. Advanced oxidation processes (AOPs) driven by •OH and/or SO4•- radicals are then promising alternatives to AMZ-contaminated waters remediation, even though, in some cases, they can originate more toxic degradation products than the parent-compound. Therefore, assessing treated solutions toxicity prior to disposal is of extreme importance. In this study, the toxicity of AMZ solutions, before and after treatment with different •OH-driven and SO4•--driven AOPs, was evaluated for five different microorganisms: Vibrio fischeri, Chlorella vulgaris, Tetrahymena thermophila, Escherichia coli, and Bacillus subtilis. In general, the toxic response of AMZ was greatly affected by the addition of reactants, especially when persulfate (PS) and/or Fe(III)-carboxylate complexes were added. The modifications of this response after treatment were correlated with AMZ intermediates, which were identified by mass spectrometry. Thus, low molecular weight by-products, resulting from fast degradation kinetics, were associated with increased toxicity to bacteria and trophic effects to microalgae. These observations were compared with toxicological predictions given by a Structure-Activity Relationships software, which revealed to be fairly compatible with our empirical findings.


Assuntos
Radical Hidroxila/química , Sulfatos/química , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Aliivibrio fischeri/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Compostos Férricos/química , Cinética , Oxirredução , Triazóis/análise , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 26(27): 27604-27619, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29736655

RESUMO

Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H2O2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H2O2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L-1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Anti-Infecciosos/química , Doxiciclina/química , Peróxido de Hidrogênio/química , Ozônio/química , Aliivibrio fischeri/química , Anti-Infecciosos/toxicidade , Doxiciclina/farmacologia , Oxirredução , Fotólise , Testes de Toxicidade Aguda , Raios Ultravioleta
6.
Water Sci Technol ; 78(8): 1668-1678, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30500791

RESUMO

In this study, a solution containing the fluoroquinolones (FQs) ciprofloxacin, lomefloxacin, and ofloxacin (antimicrobial agents) was subjected to photocatalytic oxidation under UVA irradiation, employing the commercial titanium dioxide as catalyst. On-line solid phase extraction coupled to ultra-high-performance liquid chromatography-mass spectroscopy was used to pre-concentrate and quantify the analytes. The process provided an almost 95% degradation efficiency for all the FQs. The TiO2 PC500 (100% anatase) was more efficient than TiO2 P25 (80% anatase) for FQs degradation. The matrix effect on the efficiency of the process was evaluated by ultrapure water - UW, simulated water - SW, bottled water -BW, and public drinking tap water - TW. Simulated water showed lower interference, compared to drinking water and bottled mineral water, due to the lower concentrations of hydroxyl radical scavengers. The assessment of the residual antimicrobial activity in the solution, when using 50 mg L-1 PC500 or 100 mg L-1 P25, showed reductions of biological activity (after 120 min of reaction) of 92.4% and 95.4% for Escherichia coli, and 78.1% and 84.2% for Bacillus subtilis, respectively. It shows that the photocatalytic oxidation process was able to not only degrade the FQs but also deactivate its biological activity in the resultant solution.


Assuntos
Anti-Infecciosos , Fluoroquinolonas/química , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Fluoroquinolonas/análise , Processos Fotoquímicos
7.
J Environ Manage ; 193: 439-447, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242114

RESUMO

Antimicrobials are continuously detected in environmental waters and their removal is important to avoid health and microorganisms damage. In this work, the peroxidation assisted by ultraviolet radiation (UV/H2O2) was studied to verify if the process was able to degrade sulfaquinoxaline and ofloxacin antimicrobials and to remove the toxicity and the antimicrobial activity of the solution. This process was effective on degradation of the antimicrobials, despite the antimicrobial activity removal, the toxicity of the solution increased throughout the reaction time.


Assuntos
Fotólise , Raios Ultravioleta , Anti-Infecciosos , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Pollut Res Int ; 24(7): 6252-6260, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063087

RESUMO

Lomefloxacin (LOM) is a synthetic antimicrobial from the fluoroquinolone family (FQ) used as a veterinary and human drug. Once in the environment, LOM may pose a risk to aquatic and terrestrial microorganisms due to its antimicrobial activity. This study evaluated the effect of ozonation of LOM (500 µg L-1), the residual antimicrobial activity against Escherichia coli and acute toxicity against Vibrio fischeri. In addition, degradation products were investigated by UHPLC-MS/MS and proposed. Ozonation was carried out varying the applied ozone dose from 0 to 54.0 mg L-1 O3 and pH values of 3, 7, and 11. Ozonation was most efficient at pH 11 and led to 92.8% abatement of LOM in a 9-min reaction time (54.0 mg L-1 O3 applied ozone dose). Ozonation at pH 3 was able to degrade 80.4% of LOM. At pH 7, 74.3% of LOM was degraded. Although the LOM concentration and the antimicrobial activity of the solution dropped as ozone dose increased (antimicrobial activity reduction of 95% at pH 11), toxicity to V. fischeri increased for pH 7 and 11 (i.e., 65% at pH 7 and 75% at pH 11). The reduction in antimicrobial activity may be related to the oxidation of piperazinyl and the quinolone moiety. The formation of intermediates depended on the oxidant (hydroxyl radicals or/and molecular O3) that acted the most in the process.


Assuntos
Fluoroquinolonas/farmacologia , Fluoroquinolonas/toxicidade , Ozônio/química , Poluentes Químicos da Água/farmacologia , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Fluoroquinolonas/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Oxirredução , Soluções , Poluentes Químicos da Água/química
9.
Environ Sci Pollut Res Int ; 24(7): 6288-6298, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27376368

RESUMO

Gatifloxacin, an antimicrobial drug belonging to the fluoroquinolone family, is active against Gram-positive and Gram-negative bacteria and is extensively used for the control of infections in humans. The presence of the drug in environmental matrices has already been reported. This study investigated the degradation of gatifloxacin in water by hydroxyl radicals generated by the UV254 nm/H2O2 process ([Formula: see text] 0.4-2.4 mmol L-1) and evaluated the capacity of the radicals to reduce the antimicrobial activity against Gram-positive and Gram-negative bacteria. Acute toxicity assays were performed with Vibrio fischeri, and the degradation products were proposed. The hydroxyl radicals formed in the processes were able to degrade the fluoroquinolone and remove the antimicrobial activity from the aqueous solution. Approximately 97 % gatifloxacin degradation was observed after applying 2.4 mmol L-1 of initial H2O2 concentration and 20 min of UVC254nm irradiation (130 J s-1). The acute toxicity assays showed that the toxicity of the treated solution for V. fischeri increased as the gatifloxacin concentration in the solution decreased.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Radical Hidroxila/química , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/toxicidade , Fluoroquinolonas/toxicidade , Gatifloxacina , Humanos , Peróxido de Hidrogênio/química , Testes de Sensibilidade Microbiana
10.
J Environ Manage ; 195(Pt 2): 224-231, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558831

RESUMO

Sulfaquinoxaline (SQX) is an antimicrobial of the sulfonamides class. Usually employed in veterinary medicine, this contaminant of emerging concern has been found in superficial and groundwater and its consequences for the environment and human health are not completely known. In this study, SQX (C0 = 500 µg L-1, 1 L) degradation by an ozonation process at pH 3, 7, and 11 was evaluated. Ozonation was effective in degrading SQX: efficiency exceeding 99% was obtained applying an ozone dose of 2.8 mg L-1 at pH 3. Assays were performed according to a 22 design of experiments (DOE) with star points and three central points for statistical validity. Minimum and maximum levels were set at 3 and 11 for pH, and 0 and 11.5 mg L-1 for applied ozone dose. There was no significant interaction between these variables, and the pH value played the most important role in terms of contaminant degradation. In relation to toxicity, samples ozonated at pH 3 did not inhibit the luminescence of the bacteria, even though different intermediates were formed and identified by mass spectra. At pH 7, inhibition of luminescence remained almost constant (at around 30%) according to ozonation time or ozone dose. However, the hydroxyl radical, the major oxidant at pH 11, was responsible for the formation of toxic intermediates.


Assuntos
Ozônio , Sulfaquinoxalina , Concentração de Íons de Hidrogênio , Radical Hidroxila , Oxirredução , Poluentes Químicos da Água
11.
J Chromatogr A ; 1452: 89-97, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27234844

RESUMO

Sulfonamides are antimicrobials used widely as veterinary drugs, and their residues have been detected in environmental matrices. An analytical method for determining sulfadiazine, sulfathiazole, sulfamethazine, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline residues in soils employing a solid phase extraction on-line technique coupled with ultra-high performance liquid chromatography and tandem mass spectrometry (SPE-UHPLC-MS/MS) was developed and validated in this study. SPE and chromatographic separation were performed using an Oasis HLB column and an Acquity UPLC BEH C18 analytical column, respectively, at 40°C. Samples were prepared by extracting sulfonamides from soil using a solid-liquid extraction method with water:acetonitrile, 1:1v/v (recovery of 70.2-99.9%). The following parameters were evaluated to optimize the on-line SPE process: sorbent type (Oasis and C8), sample volume (100-400µL), loading solvent (water and different proportions of water:methanol) and washing volume (0.19-0.66mL). The method produced linear results for all sulfonamides from 0.5 to 12.5ngg(-1) with a linearity greater than 0.99. The precision of the method was less than 15%, and the matrix effect was -27% to -87%. The accuracy was in the range of 77-112% for all sulfonamides. The limit of quantitation in the two soils (clay and sand) was 0.5ngg(-1). The SPE column allowed for the analysis of many (more than 2000) samples without decreasing the efficiency.


Assuntos
Resíduos de Drogas/análise , Solo/química , Extração em Fase Sólida/métodos , Sulfonamidas/análise , Espectrometria de Massas em Tandem/métodos , Acetonitrilas , Cromatografia Líquida de Alta Pressão , Drogas Veterinárias/química , Água
12.
Environ Sci Pollut Res Int ; 23(6): 5654-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26578379

RESUMO

Ivermectin (IVM) is a broad-spectrum antiparasitic drug that is regularly employed in veterinary medicine. In this work, the sorption and desorption of IVM in two Brazilian soils (N1-sand and S2-clay) as well as its leaching capacity, dissipation under aerobic conditions, and degradation in aqueous solution by photocatalysis with TiO2 in suspension were evaluated. The kinetic sorption curves of IVM were adjusted to a pseudo-second-order model. The sorption and desorption data were well fitted with the Freundlich isotherms in the log form (r > 0.96). The Freundlich sorption coefficient (K F (ads) ) and the Freundlich desorption coefficient (K F (des) ) were 77.7 and 120 µg(1-1/n) (cm(3))(1/n) g(-1) and 74.5 and 138 µg(1-1/n) (cm(3))(1/n) g(-1), for soils N1 and S2, respectively. A greater leaching capacity of IVM was observed for the sandy soil N1 than for the clay soil S2. Under aerobic conditions, the dissipation (DT50) at 19.3 °C was 15.5 days (soil N1) and 11.5 days (soil S2). Photocatalysis with UVC and TiO2 in suspension resulted in the degradation of 98 % of IVM (500 µg L(-1)) in water in 600 s. The toxicity (Daphnia similis) of the solutions submitted to the photocatalytic process was completely eliminated after 10 min.


Assuntos
Antiparasitários/análise , Daphnia/efeitos dos fármacos , Ivermectina/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Aerobiose , Silicatos de Alumínio/química , Animais , Antiparasitários/efeitos da radiação , Antiparasitários/toxicidade , Biodegradação Ambiental , Brasil , Argila , Ivermectina/efeitos da radiação , Ivermectina/toxicidade , Cinética , Solo/química , Poluentes do Solo/efeitos da radiação , Poluentes do Solo/toxicidade , Titânio/química , Raios Ultravioleta , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 445-446: 337-46, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23354374

RESUMO

Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 µg L(-1)) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L(-1) Fe(II), 2.0 mmol L(-1) H(2)O(2) and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L(-1) Fe(II) and 10.0 mmol L(-1) H(2)O(2) were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone.


Assuntos
Anti-Infecciosos/química , Fluoroquinolonas/química , Peróxido de Hidrogênio/química , Ferro/química , Purificação da Água/métodos , Aliivibrio fischeri/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Exposição Ambiental , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Testes de Toxicidade , Raios Ultravioleta
14.
J Environ Manage ; 110: 33-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705858

RESUMO

The effectiveness of photolysis (UV), peroxidation (H(2)O(2)), peroxidation combined with UV light (UV/H(2)O(2)), Fenton reagent (H(2)O(2)/Fe(2+)), and the photo-Fenton process (H(2)O(2)/Fe(2+)/UV) at degrading the textile dye Reactive Blue 19 was evaluated. The efficiency of the photo-Fenton process for degrading raw textiles and biologically pre-treated effluents was also evaluated. H(2)O(2) (100-800 mg L(-1)) and UV light did not degrade dye when used separately. The UV/H(2)O(2) process was effective but slow: 91% of dye degraded within 3 h of reaction at a concentration of 500 mg L(-1) H(2)O(2). Fenton reagent reduced dissolved organic carbon by 36.8% and color was reduced by >98% within a few minutes of reaction. The photo-Fenton process was the most efficient, reducing 94.5% of dissolved organic carbon and 99.4% of color. The combination of a biological system and the photo-Fenton process degraded a high level of textile effluent degradation, reducing dissolved organic carbon by 88%, color by 85%, chemical oxygen demand by 80%, and biochemical oxygen demand by 93%.


Assuntos
Antraquinonas/química , Corantes/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Fotólise , Fatores de Tempo , Raios Ultravioleta
15.
J Environ Manage ; 107: 96-101, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22595075

RESUMO

The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluent's CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.


Assuntos
Carbono/química , Formaldeído/química , Oxirredução , Fotólise
16.
Eng. sanit. ambient ; 15(1): 93-98, jan.-mar. 2010. ilus, tab
Artigo em Português | LILACS | ID: lil-545402

RESUMO

As indústrias de papel e celulose descartam no ambiente um grande volume de efluente contendo grande quantidade da substância lignina, que atribui coloração e apresenta considerável potencial de toxicidade. Neste trabalho, foi avaliada a ozonização em meio básico para a redução de cor do licor negro gerado por uma indústria de celulose de algodão. Face aos resultados, foi possível observar que, para menores concentrações iniciais de ozônio (0,4 gO3 L-1 h-1), foi necessário um tempo mais longo de ozonização para se obter a redução desejada de 80 por cento da cor. O consumo específico de ozônio, entretanto, em comparação a experimentos com dosagens mais elevadas (4,3 gO3 L-1 h-1) foi menor. Sugere-se que o oxigênio molecular desempenhe, também, um importante papel na oxidação dos compostos, participando do mecanismo de oxidação iniciado por radical hidroxila, •OH, formado na ozonização em meio básico.


Pulp and paper mills discharge large amounts of wastewater containing high concentrations of lignin, a coloring substance that is dangerous and presents high toxicity to the environment. In this study, ozonation in alkaline ambience was evaluated for color reduction in black liquor, generated in a cotton linter mill. It was observed that the ozonation time to reach 80 percent color reduction was higher at a lower initial ozone dose (0,4 gO3 L-1 h-1) in comparison to a higher initial ozone dose (4,3 gO3 L-1 h-1). On the other hand, the amount of consumed oxidant was lower at the lower ozone dose. It is suggested that molecular oxygen participates in the oxidation mechanism of colored compounds, which is initiated by hydroxyl radicals (•OH) formed during ozonation in alkaline ambience.

17.
Sci Total Environ ; 407(1): 105-15, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18805570

RESUMO

This work investigated the degradation of a natural (17beta-estradiol) and a synthetic (17alpha-ethinylestradiol) estrogens (pure or in the mixture) and the removal of estrogenic activity by the ozonation and O3/H2O2 process in three different pHs (3, 7 and 11). The effect of oxidation via OH radical was evaluated adding a radical scavenger (t-butanol) in the medium. Estrogenic activity was performed using the YES assay. 17beta-estradiol and 17alpha-ethinylestradiol presented similar estrogenic potential and the association of these estrogens resulted in an addictive effect for estrogenic activity. Ozonation and O3/H2O2 processes were effective in removing the estrogens in aqueous solution. In the mixture at pH 11, removals were higher than 98% and 96% for 17beta-estradiol and 17alpha-ethinylestradiol, respectively. In pH 3, 17beta-estradiol and 17alpha-ethinylestradiol removals were 100% and 99.7%, respectively. When estrogens were treated separately, the removals in pH 11 were superior to 99.7 and 98.8%, while in pH 3 were 100% and 99.5% for 17beta-estradiol and 17alpha-ethinylestradiol, respectively. 17alpha-ethinylestradiol has been always removed at lower rates (pure or in the mixture) for all applied conditions. Estrogenic activity was completely removed in pH 3 for ozonation or O3/H2O2. The samples oxidized in pH 11 presented higher estrogenic activity than those in pH 7. Estrogens removal was lower at pHs 7 and 11, when the scavenger was added to the media. The higher estrogen residual concentrations found in ozonation in presence of tert-butanol are contributing for higher estrogenic activity observed in pHs 7 and 11. By-products with estrogenic activity were formed by oxidation via OH radical. Only a few compounds could be identified in pHs 7 and 11 and they have a phenolic ring, which, probably is contributing to the estrogenic activity observed.


Assuntos
Estradiol/análise , Etinilestradiol/análise , Peróxido de Hidrogênio/química , Ozônio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Bioensaio , Relação Dose-Resposta a Droga , Estradiol/química , Etinilestradiol/química , Concentração de Íons de Hidrogênio , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...