Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 33(4): e4248, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977123

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is typically associated with early metabolic remodeling. Noninvasive imaging biomarkers that reflect these changes will be crucial in determining responses to early drug interventions in these patients. Mean intracellular water lifetime (τi ) has been shown to be partially inversely related to Na, K-ATPase transporter activity and may thus provide insight into the metabolic status in HFpEF patients. Here, we aim to perform regional quantification of τi using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in the nonhuman primate (NHP) heart and evaluate its region-specific variations under conditions of myocardial stress in the context of perturbed myocardial function. Cardiac stress was induced in seven naïve cynomolgus macaques using a dobutamine stepwise infusion protocol. All animals underwent 3 T cardiac dual-bolus DCE and tagging MRI experiments. The shutter-speed model was employed to quantify regional τi from the DCE-MR images. Additionally, τi values were correlated with myocardial strains. During cardiac stress, there was a significant decrease in global τi (192.9 ± 76.3 ms vs 321.6 ± 70 ms at rest, P < 0.05) in the left ventricle, together with an increase in global peak circumferential strain (-15.4% ± 2.7% vs -10.1% ± 2.9% at rest, P < 0.05). Specifically, slice-level analysis further revealed that a greater significant decrease in mean τi was observed in the apical region (ΔτI = 182.4 ms) compared with the basal (Δτi = 113.2 ms) and midventricular regions (Δτi = 108.4 ms). Regional analysis revealed that there was a greater significant decrease in mean τi in the anterior (Δτi = 243.9 ms) and antero-lateral (Δτi = 177.2 ms) regions. In the inferior and infero-septal regions, although a decrease in τi was observed, it was not significant. Whole heart regional quantification of τi is feasible using DCE-MRI. τi is sensitive to regional changes in metabolic state during cardiac stress, and its value correlates with strain.


Assuntos
Miocárdio/patologia , Estresse Fisiológico , Água/química , Animais , Biomarcadores/metabolismo , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo
2.
J Magn Reson Imaging ; 45(2): 556-569, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384520

RESUMO

PURPOSE: To identify reproducible and reliable noninvasive regional imaging biomarkers of cardiac function and perfusion at rest and under stress in healthy nonhuman primates (NHPs) that may be used in the future for the early characterization of preclinical heart failure models, to evaluate therapy, and for clinical translation. MATERIALS AND METHODS: Seven naive cynomolgus macaques underwent test-retest 3T cardiac MRI tagging and dual-bolus perfusion experiments. Regional cardiac function biomarkers, such as peak circumferential strain (CS), average diastolic strain-rate (DSR), contractile reserve (CR), diastolic reserve, peak torsion, and torsion reserve were quantified. Further, regional myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and myocardial perfusion reserve-to-contractile reserve (MPR/CR) were also derived. Inter- and intraobserver reproducibility and test-retest reliability analyses were conducted using the reliability and generalizability coefficients including correlation coefficient (CC) and intraclass correlation coefficient (ICC). RESULTS: Overall, peak CS, DSR, and MBF are robust biomarkers at both rest and stress with moderate-good inter- and intraobserver reproducibility and test-retest reliability. At rest: intra-/interobserver reproducibility (CC): peak CS (0.81/0.81), DSR (0.81/0.81), MBF (0.72/0.57), peak torsion (0.79/0.79); test-retest reliability: (CC/ICC): peak CS (0.62/0.75), DSR (0.24/0.55), MBF (0.66/0.62), and peak torsion (0.79/0.78). Under stress: intra-/interobserver reproducibility (CC): peak CS (0.61/0.60), DSR (0.50/0.50), MBF (0.63/0.61), MPR (0.43/0.43), and peak torsion (0.38/0.38); test-retest reliability: (CC/ICC): peak CS (0.58/0.58), DSR (0.24/0.43), MBF (0.58/0.58), MPR (0.43/0.38), and peak torsion (0.38/0.38). CONCLUSION: We demonstrated the feasibility of using cardiac MRI to characterize left ventricular functional and perfusion responses to stress in an NHP species, and specific robust biomarkers such as peak CS, DSR, MBF, diastolic reserve, and MPR have been identified for clinical translation and drug research. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:556-569.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Coronária/fisiologia , Dobutamina , Teste de Esforço/métodos , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Animais , Biomarcadores , Humanos , Macaca fascicularis , Angiografia por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
PLoS One ; 11(6): e0156805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27309348

RESUMO

BACKGROUND: Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. METHODOLOGY: Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). PRINCIPAL FINDINGS: Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. CONCLUSIONS: These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.


Assuntos
Capsaicina/efeitos adversos , Cerebelo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Hiperalgesia/diagnóstico por imagem , Dor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiopatologia , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Injeções Subcutâneas , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Dor/induzido quimicamente , Dor/fisiopatologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Cauda , Sensação Térmica/fisiologia
4.
PLoS One ; 10(5): e0127947, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010607

RESUMO

Pre-clinical animal models are important to study the fundamental biological and functional mechanisms involved in the longitudinal evolution of heart failure (HF). Particularly, large animal models, like nonhuman primates (NHPs), that possess greater physiological, biochemical, and phylogenetic similarity to humans are gaining interest. To assess the translatability of these models into human diseases, imaging biomarkers play a significant role in non-invasive phenotyping, prediction of downstream remodeling, and evaluation of novel experimental therapeutics. This paper sheds insight into NHP cardiac function through the quantification of magnetic resonance (MR) imaging biomarkers that comprehensively characterize the spatiotemporal dynamics of left ventricular (LV) systolic pumping and LV diastolic relaxation. MR tagging and phase contrast (PC) imaging were used to quantify NHP cardiac strain and flow. Temporal inter-relationships between rotational mechanics, myocardial strain and LV chamber flow are presented, and functional biomarkers are evaluated through test-retest repeatability and inter subject variability analyses. The temporal trends observed in strain and flow was similar to published data in humans. Our results indicate a dominant dimension based pumping during early systole, followed by a torsion dominant pumping action during late systole. Early diastole is characterized by close to 65% of untwist, the remainder of which likely contributes to efficient filling during atrial kick. Our data reveal that moderate to good intra-subject repeatability was observed for peak strain, strain-rates, E/circumferential strain-rate (CSR) ratio, E/longitudinal strain-rate (LSR) ratio, and deceleration time. The inter-subject variability was high for strain dyssynchrony, diastolic strain-rates, peak torsion and peak untwist rate. We have successfully characterized cardiac function in NHPs using MR imaging. Peak strain, average systolic strain-rate, diastolic E/CSR and E/LSR ratios, and deceleration time were identified as robust biomarkers that could potentially be applied to future pre-clinical drug studies.


Assuntos
Biomarcadores , Macaca fascicularis/fisiologia , Imageamento por Ressonância Magnética , Modelos Animais , Função Ventricular Esquerda/fisiologia , Animais , Diástole , Feminino , Reprodutibilidade dos Testes , Sístole
5.
PLoS One ; 9(10): e110432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337714

RESUMO

BACKGROUND: Pharmacological MRI (phMRI) is a neuroimaging technique where drug-induced hemodynamic responses can represent a pharmacodynamic biomarker to delineate underlying biological consequences of drug actions. In most preclinical studies, animals are anesthetized during image acquisition to minimize movement. However, it has been demonstrated anesthesia could attenuate basal neuronal activity, which can confound interpretation of drug-induced brain activation patterns. Significant efforts have been made to establish awake imaging in rodents and nonhuman primates (NHP). Whilst various platforms have been developed for imaging awake NHP, comparison and validation of phMRI data as translational biomarkers across species remain to be explored. METHODOLOGY: We have established an awake NHP imaging model that encompasses comprehensive acclimation procedures with a dedicated animal restrainer. Using a cerebral blood volume (CBV)-based phMRI approach, we have determined differential responses of brain activation elicited by the systemic administration of buprenorphine (0.03 mg/kg i.v.), a partial µ-opioid receptor agonist, in the same animal under awake and anesthetized conditions. Additionally, region-of-interest analyses were performed to determine regional drug-induced CBV time-course data and corresponding area-under-curve (AUC) values from brain areas with high density of µ-opioid receptors. PRINCIPAL FINDINGS: In awake NHPs, group-level analyses revealed buprenorphine significantly activated brain regions including, thalamus, striatum, frontal and cingulate cortices (paired t-test, versus saline vehicle, p<0.05, n = 4). This observation is strikingly consistent with µ-opioid receptor distribution depicted by [6-O-[(11)C]methyl]buprenorphine ([(11)C]BPN) positron emission tomography imaging study in baboons. Furthermore, our findings are consistent with previous buprenorphine phMRI studies in humans and conscious rats which collectively demonstrate the cross-species translatability of awake imaging. Conversely, no significant change in activated brain regions was found in the same animals imaged under the anesthetized condition. CONCLUSIONS: Our data highlight the utility and importance of awake NHP imaging as a translational imaging biomarker for drug research.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Corpo Estriado/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Anestesia Geral , Animais , Corpo Estriado/fisiologia , Feminino , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Macaca fascicularis/fisiologia , Imageamento por Ressonância Magnética/métodos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Tálamo/fisiologia , Pesquisa Translacional Biomédica , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...