Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(9): 4164-4187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33292066

RESUMO

The olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs). OBP has not yet been exploited to develop a suitable technique to detect oestrus which is being reported as a difficult task in buffalo. In the present study, using molecular biology and protein engineering approaches, we have cloned six novel OBP isoforms from buffalo nasal epithelium odorant-binding proteins (bnOBPs). Furthermore, 3 D models were developed and molecular-docking, dynamics experiments were performed by in silico approaches. In particular, we found four residues (Phe104, Phe134, Phe69 and Asn118) in OBP1a, which contributed to favourable interactions towards two sex pheromones, specifically oleic acid and p-cresol. We expressed this protein in Escherichia coli from female buffalo urine and validated through fluorescence quenching studies to show similar strong binding affinities of OBP1a to oleic acid and p-cresol. By using structural data, the binding specificity was also verified by site-directed mutagenesis of the four residues followed by in vitro binding assays. Our results enable us to better understand the functions of different nasal epithelium OBP isoforms in buffaloes. They also lead to improved understanding of the interaction between olfactory proteins and odorants to develop highly selective biosensing devices for non-invasive detection of oestrus in buffaloes. Communicated by Ramaswamy H. Sarma.


Assuntos
Búfalos , Receptores Odorantes , Animais , Búfalos/metabolismo , Feminino , Simulação de Acoplamento Molecular , Odorantes , Ácido Oleico , Isoformas de Proteínas , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835918

RESUMO

This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of -20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.

3.
J Photochem Photobiol B ; 203: 111747, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31884348

RESUMO

In the present study, a simple and a selective colorimetric method for pheromone detection to diagnose estrus in cattle was established based on the l-tyrosine functionalized silver nanoparticles (l-TyrAgNPs). The synthesized silver nanoparticles was spotted by color change (colorless to pale yellow) due to surface plasmon resonance (SPR). In order to confirm, Ag nanoparticles was characterized by field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) and zeta potential, X-ray diffraction (XRD) and UV- Vis spectrophotometer. It was found that the pre-colored Ag colloids could be turned from yellow to reddish-brown by the addition of the sex pheromones such as acetic acid or propionic acid, which may have potential application in the colorimetric sensor. The augmented optical nature of nanoparticles furnishes a suitable base to develop a colorimetric sensor for bovine sex pheromones detection. In addition, the computational analyses are critically required to validate residual interactions of bovine odorant-binding protein (OBP) with pheromones. The method was successfully applied to the detection of acetic acid or propionic acid using a biological molecule l-Tyr AgNPs. These results clearly indicate that the biosynthesis of l-Tyr AgNPs can be used as a promising colorimetric sensor for accurate time of estrus prediction in bovine.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Atrativos Sexuais/análise , Prata/química , Tirosina/química , Animais , Sítios de Ligação , Bovinos , Colorimetria , Detecção do Estro/métodos , Receptores Odorantes/química , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...