Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(42): 17622-17632, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643387

RESUMO

Transient, dissipative, aggregation and deaggregation of Au nanoparticles (NPs) or semiconductor quantum dots (QDs) leading to control over their transient optical properties are introduced. The systems consist of nucleic acid-modified pairs of Au NPs or pairs of CdSe/ZnS QDs, an auxiliary duplex L1/T1, and the nicking enzyme Nt.BbvCI as functional modules yielding transient aggregation/deaggregation of the NPs and dynamically controlling over their optical properties. In the presence of a fuel strand L1', the duplex L1/T1 is separated, leading to the release of T1 and the formation of duplex L1/L1'. The released T1 leads to aggregation of the Au NPs or to the T1-induced G-quadruplex bridged aggregated CdSe/ZnS QDs. Biocatalytic nicking of the L1/L1' duplex fragments L1' and the released L1 displaces T1 bridging the aggregated NPs or QDs, resulting in the dynamic recovery of the original NPs or QDs modules. The dynamic aggregation/deaggregation of the Au NPs is followed by the transient interparticle plasmon coupling spectral changes. The dynamic aggregation/deaggregation of the CdSe/ZnS QDs is probed by following the transient chemiluminescence generated by the hemin/G-quadruplexes bridging the QDs and by the accompanying transient chemiluminescence resonance energy transfer proceeding in the dynamically formed QDs aggregates. A third system demonstrating transient, dissipative, luminescence properties of a reaction module consisting of nucleic acid-stabilized Ag nanoclusters (NCs) is introduced. Transient dynamic formation and depletion of the supramolecular luminescent Ag NCs system via strand displacement accompanied by a nicking process are demonstrated.

2.
Nanotechnology ; 31(25): 255502, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160600

RESUMO

Low cost short wavelength infrared (SWIR) photovoltaic (PV) detectors and solar cells are of very great interest, yet the main production technology today is based on costly epitaxial growth of InGaAs layers. In this study, layers of p-type, quantum confined (QC) PbS nano-domains (NDs) structure that were engineered to absorb SWIR light at 1550 nm (Eg = 0.8 eV) were fabricated from solution using the chemical bath deposition (CBD) technique. The layers were grown on top of two different n-type CdS intermediate layers (Eg = 2.4 eV) using two different CBD protocols on fluoride tin oxide (FTO) substrates. Two types of CdS/PbS heterojunction were obtained to serve as SWIR PV detectors. The two resulting devices showed similar photoluminescence behavior, but a profoundly different electrical response to SWIR illumination. One type of CdS/PbS heterojunction exhibited a PV response to SWIR light, while the other demonstrated a photo-response to SWIR light only under an applied bias. To clarify this intriguing phenomenon, and since the only difference between the two heterojunctions could be the doping level of the CdS layer, we measured the doping level of this layer by means of the surface photo voltage (SPV). This yielded different polarizations for the two devices, indicating different doping levels of the CdS for the two different fabrication protocols, which was also confirmed by Hall Effect measurements. We performed current voltage measurements under super bandgap illumination, with respect to CdS, and got an electrical response indicating a barrier free for holes transfer from the CdS to the PbS. The results indicate that the different response does, indeed, originate from variations in the band structures at the interface of the CdS/PbS heterojunction due to the different doping levels of the CdS. We found that, unlike solar cells or visible light detectors having similar structure, in SWIR photodetectors, a type I heterojunction is formed having a barrier at the interface that limits the injection of the photo-exited electrons from the QC-PbS to the CdS side. Higher n-doped CdS generates a narrow depletion region on the CdS side, with a spike like barrier that is narrow enough to enable tunneling current, leading to a PV current. Our results show that an external quantum efficiency (EQE) of ∼2% and an internal quantum efficiency (IQE) of ∼20% can be obtained, at zero bias, for CBD grown SWIR sensitive CdS/PbS-NDs heterojunctions.

3.
Opt Lett ; 44(5): 1269-1272, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821765

RESUMO

A liquid crystal optically addressed spatial light modulator based on an InGaAs photodiode array operating at low light levels is investigated in the short wavelength infrared (SWIR) spectral band to serve as a SWIR-to-visible imaging upconversion device. It consists of InGaAs/InP heterojunction photodetectors array sandwiched with a nematic LC layer. The photodiode array is composed of a 640×512 InGaAs/Inp heterojunctions, grown on InP substrate with a 15 µm pitch. Full up-converted visible images in stills and video modes were demonstrated with SWIR light intensities as low as 70 nW/cm2 or less than pW/pixel. The influence of operation frequency on the performance of the device was found theoretically and experimentally to be crucial for a proper operation of the device. The optimum sensitivity and contrast of the device was found at a frequency around 70 Hz. To the best of our knowledge, this is the first time that such a high performance upconversion device is presented and that actual visible images are obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...