Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17636-17645, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645349

RESUMO

Sutures are a crucial component of surgical procedures, serving to close and stabilize wound margins to promote healing. However, microbial contamination of sutures can increase the risk of surgical site infections (SSI) due to colonization by pathogens. This study aimed to tackle SSI by synthesizing positively charged silver nanoparticles (P-AgNPs) and using them to produce antimicrobial sutures. The P-AgNPs were reduced and stabilized using polyethylenimine (PEI), a cationic branched polymer. The physiochemical characteristics of P-AgNPs were confirmed from the surface plasmon resonance (SPR) peak at 419 nm, spherical morphology with a particle size range of 8-10 nm, PEI functional groups on NPs, a hydrodynamic diameter of 12.3 ± 2.4 nm, and a zeta potential of 31.3 ± 6 mV. Subsequently, the surfaces of silk sutures were impregnated with P-AgNPs at different time intervals (24, 48, and 96 h) using an ex situ method. Scanning electron microscopy (SEM) and tensile strength studies were conducted to determine the coating and durability of the NP-coated sutures. The NPs were quantified on sutures using inductively coupled plasma optical emission spectrophotometry (ICP-OES), which was in the range of 1-5 µg. Primarily, antimicrobial activity was studied using three microorganisms (Candida albicans, Streptococcus mutans, and Staphylococcus aureus) for both P-AgNPs and suture-coated P-AgNPs using the agar diffusion method. The results showed that only the NPs and NP-coated sutures exhibited enhanced antimicrobial effects against bacteria and fungi. Finally, the cytotoxicity of the sutures was investigated using stem cells from the apical papilla (SCAPs) for 24 h, which exhibited more than 75% cell viability. Overall, the results indicate that NP-coated sutures can potentially be used as antimicrobial sutures to diminish or inhibit SSI in postoperative or general surgery patients.

2.
RSC Adv ; 14(7): 4436-4447, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312721

RESUMO

In this study, we developed an ink using hexanethiol and Cu(In,Ga)Se2 microcrystals (CIGSe MCs) to make thin films via doctor blade coating. Besides, crack-free thin films were obtained by optimizing CIGSe MC powder concentration and annealing temperature. Subsequently, single-step selenization was performed with and without sodium chloride (NaCl) surface treatment by carefully tuning the temperature. A crack-free surface with densely packed grains was obtained at 500 °C after NaCl treatment. Moreover, the structural parameters of the thin film (annealed at 350 °C) were significantly modified via selenization with NaCl at 500 °C. For instance, the FWHM of the prominent (112) plane reduced from 1.44° to 0.47°, the dislocation density minimized from 13.10 to 1.40 × 1015 lines per m2, and the microstrain decreased from 4.14 to 1.35 × 10-3. Remarkably, these thin films exhibited a high mobility of 26.7 cm2 V-1 s-1 and a low resistivity of 0.03 Ω cm. As a proof of concept, solar cells were engineered with a device structure of SLG/Mo/CIGSe/CdS/i-ZnO/Al-ZnO/Ag, wherein a power conversion efficiency (PCE) of 5.74% was achieved with exceptional reproducibility. Consequently, the outcomes of this investigation revealed the impact of selenization temperature and NaCl treatment on the physical properties and PCE of hexanethiol-based crack-free CIGSe MC ink-coated absorbers, providing new insights into the groundwork of cost-effective solar cells.

3.
RSC Adv ; 13(42): 29784-29800, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37829709

RESUMO

Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 µg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 µg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.

4.
Biomater Adv ; 147: 213354, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842245

RESUMO

Cancer nanomedicine has been investigated widely and boomed in the last two decades, resulting in designing nanostructures with biofunctionalization, giving rise to an "All-in-One" multifunctional platform. The development of rational design technology with extended functionalities brought interdisciplinary researchers to work continuously, aiming to find a prevent or effectively treat the deadly disease of the century. Thus, it led to some Food and Drug Administration (FDA)-approving nano-based formulations for cancer treatment and opening a vast area of promising discoveries by exploiting different nanomaterials. Two-dimensional (2D) materials have recently gained tremendous interest among scientists because of their outstanding structural, optical, electronic, thermal, and mechanical characteristics. Among various 2D nanomaterials, MXenes are a widely studied nanosystem because of their close similarity to graphene analogs. So, it is synthesized using multiple approaches and exploits their inherited properties. But in most cases, surface functionalization techniques are carried out for targeting, site-specific drug clearance, renal clearance, and biocompatible with healthy cells. Thus, fabricating a multimodal agent for mono or combined therapies is also an image-guided diagnostic agent. This review will explain the recent and emerging advancements of MXenes-based composites as a multifunctional theragnostic agent and discuss the possibilities of transferring laboratory research to clinical translation.


Assuntos
Nanoestruturas , Neoplasias , Estados Unidos , Humanos , Oncologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanomedicina , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
5.
Nanomedicine ; 48: 102653, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646193

RESUMO

Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose , Vacinas , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/terapia , Tuberculose/diagnóstico , Tuberculose/prevenção & controle , Nanotecnologia , Lipídeos , Teste para COVID-19
6.
Biochimie ; 194: 96-107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34974144

RESUMO

A recent discovery of revolutionary Clustered regularly interspaced palindromic repeats (CRISPR) is a gene-editing tool that provides a type of adaptive immunity in prokaryotic organisms, which is currently used as a revolutionizing tool in biomedical research. It has a mechanism of correcting genome errors, turning on/off genes in cells and organisms. Most importantly playing a crucial function in bacterial defence by identifying and destroying Deoxyribonucleic acid (DNA) segments during bacteriophage invasions since the CRISPR-associated protein 9 (Cas9) enzyme recognizes and cleaves invasive DNA sequences complementary to CRISPR. Therefore, researchers employ this biological device to manipulate the genes to develop new therapies to combat systemic diseases. Currently, the most significant advance at the laboratory level is the generation of cell and animal models, functional genomic screens, live images of the cell genome, and defective DNA repairs to find the cure for genetic disorders. Even though this technology has enormous biomedical applications in various sectors, this review will summarize CRISPR/Cas emphasizing both the therapeutic and diagnostic mechanisms developed in the field of dentistry and the promising attempts to transfer this technology to clinical application. Finally, future developments are also described, which proposes to use CRISPR/Cas systems for prospective clinical dentistry applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Odontologia , Edição de Genes/métodos , Estudos Prospectivos , Tecnologia
7.
Pharmaceutics ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834218

RESUMO

Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.

8.
Biointerphases ; 15(4): 041003, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32668909

RESUMO

Tuberculosis is the top infectious disease worldwide and the development of a vaccine and diagnostic tools to control the disease is a priority that requires a better understanding of the factors involved in the pathogenesis of Mycobacterium tuberculosis, the infectious agent. It is known that bacterial cell surface components are released, interact with immune cell receptors, and may traffic toward host cell structures. Many of these compounds are lipids that have been associated with mycobacterial virulence. However, their hydrophobic nature has frequently hampered their biological study. In this work, silica particles were coated with functional lipids to obtain a colloidal bioinspired system based on nonhydrosoluble glycolipids. Mycobacterium tuberculosis phosphatidylinositol mannosides (PIMs), known to interact with receptors of innate immune cells, were purified from the M. tuberculosis H37Rv type strain, and used to prepare large unilamellar liposomes in combination with zwitterionic phosphatidyl choline. Then, bacillary-like Santa Barbara Amorphous-15 (SBA-15) silica particles were cationized and the vesicle fusion method was used to promote the attachment of anionic PIM-containing lipid bilayers. Thermogravimetric analysis, x-ray diffraction, N2 adsorption-desorption isotherm analysis, Fourier transform infrared spectroscopy, electron microscopy, and zeta potential analyses were used to characterize the materials obtained. The as-prepared PIM-containing colloids, named PIM@SBA-15, showed biocompatibility toward human fibroblasts and were found to colocalize with Toll-like receptor (TLR)2 upon their incubation with THP1-derived macrophages. Furthermore, the particles induced the formation of pseudopods and were internalized into phagocytic cells. In all, these data suggest the usefulness of PIM@SBA-15 particles to better comprehend the interactions between immune cells and PIMs.


Assuntos
Coloides/química , Fosfatidilinositóis/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Fagocitose/efeitos dos fármacos , Fosfatidilinositóis/metabolismo , Porosidade , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose/patologia , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...