Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-469755

RESUMO

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here we show that in COVID-19 patients, circulating plasmacytoid dendritic cells (pDCs) decline early after symptom onset and this correlated with COVID-19 disease severity. This transient depletion coincides with decreased expression of antiviral type I IFN and the systemic inflammatory cytokines CXCL10 and IL-6. Importantly, COVID-19 disease severity correlated with decreased pDC frequency in peripheral blood. Using an in vitro stem cell-based human pDC model, we demonstrate that pDCs directly sense SARS-CoV-2 and in response produce multiple antiviral (IFN and IFN{lambda}1) and inflammatory (IL-6, IL-8, CXCL10) cytokines. This immune response is sufficient to protect epithelial cells from de novo SARS-CoV-2 infection. Targeted deletion of specific sensing pathways identified TLR7-MyD88 signaling as being crucial for production of the antiviral IFNs, whereas TLR2 is responsible for the inflammatory IL-6 response. Surprisingly, we found that SARS-CoV-2 engages the neuropilin-1 receptor on pDCs to mitigate the antiviral IFNs but not the IL-6 response. These results demonstrate distinct sensing pathways used by pDCs to elicit antiviral vs. immunopathological responses to SARS-CoV-2 and suggest that targeting neuropilin-1 on pDCs may be clinically relevant for mounting TLR7-mediated antiviral protection. One Sentence SummarypDCs sense SARS-CoV-2 and elicit antiviral protection of lung epithelial cells through TLR7, while recognition of TLR2 elicits an IL-6 inflammatory response associated with immunopathology. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=163 SRC="FIGDIR/small/469755v1_ufig1.gif" ALT="Figure 1"> View larger version (35K): org.highwire.dtl.DTLVardef@fe64daorg.highwire.dtl.DTLVardef@18f4278org.highwire.dtl.DTLVardef@54de50org.highwire.dtl.DTLVardef@1cf67cb_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical abstract:C_FLOATNO SARS-CoV-2 sensing by plasmacytoid dendritic cells. SARS-CoV-2 is internalized by pDCs via a yet unknown endocytic mechanism. The intracellular TLR7 sensor detects viral RNA and induces a signaling cascade involving MyD88-IRAK4-TRAF6 (1) to induce CXCL10 and, via IRF7 phosphorylation and translocation, inducing type I and III Interferons (2). Once secreted, type I and III IFNs initiate autocrine and paracrine signals that induce the expression of IFN stimulated genes (ISGs), thereby facilitating an antiviral response that can protect the cell against infection. However, SARS-CoV-2, has the intrinsic property to facilitate CD304 signaling, potentially by interfering with IRF7 nuclear translocation, thereby inhibiting type I IFN production and thus reducing the antiviral response generated by the pDC (4). Furthermore, the SARS-CoV-2 envelope (E) glycoprotein is sensed by the extracellular TLR2/6 heterodimer and this facilitates production of the inflammatory IL-6 cytokine (5). Illustration was created with BioRender.com C_FIG

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-462460

RESUMO

COVID-19 caused by the SARS-CoV-2 virus remains a threat to global health. The disease severity is mediated by cell death and inflammation, which regulate both the antiviral and the pathological innate immune responses. ZBP1, an interferon-induced cytosolic nucleic acid sensor, facilitates antiviral responses via RIPK3. Although ZBP1-mediated cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway that depends on ubiquitination and RIPK3s scaffolding ability independently of cell death. In human cells, ZBP1 associates with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. RIPK1 and ZBP1 are ubiquitinated to promote TAK1- and IKK-mediated inflammatory signaling. Additionally, RIPK1 recruits the p43/41-caspase-8-p43-FLIP heterodimer to suppress RIPK3 kinase activity, which otherwise promotes inflammatory signaling in a kinase activity-dependent manner. Lastly, we show that ZBP1 contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK1-RIPK3-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspase-8. Our results suggest the ZBP1 pathway contributes to inflammation in response to SARS-CoV-2 infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-206458

RESUMO

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here we demonstrate that the NRF2 anti-oxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular anti-viral program, which potently inhibits replication of SARS-CoV2 across cell lines. The anti-viral program extended to inhibit the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, induction of NRF2 by 4-OI and DMF limited host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2. One Sentence SummaryNRF2 agonists 4-octyl-itaconate (4-OI) and dimethyl fumarate inhibited SARS-CoV2 replication and virus-induced inflammatory responses, as well as replication of other human pathogenic viruses.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-149153

RESUMO

Pandemic spread of emerging human pathogenic viruses such as the current SARS-CoV-2, poses both an immediate and future challenge to human health and society. Currently, effective treatment of infection with SARS-CoV-2 is limited and broad spectrum antiviral therapies to meet other emerging pandemics are absent leaving the World population largely unprotected. Here, we have identified distinct members of the family of polyether ionophore antibiotics with potent ability to inhibit SARS-CoV-2 replication and cytopathogenicity in cells. Several compounds from this class displayed more than 100-fold selectivity between viral-induced cytopathogenicity and inhibition of cell viability, however the compound X-206 displayed >500-fold selectivity and was furthermore able to inhibit viral replication even at sub-nM levels. The antiviral mechanism of the polyether ionophores is currently not understood in detail. We demonstrate, through unbiased bioactivity profiling, that their effects on the host cells differ from those of cationic amphiphiles such as hydroxychloroquine. Collectively, our data suggest that polyether ionophore antibiotics should be subject to further investigations as potential broad-spectrum antiviral agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...