Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Pathol ; 29(6): 639-52, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11794380

RESUMO

A compendium of carcinogenesis bioassay results organized by target organ is presented for 738 chemicals that are carcinogenic in chronic-exposure, long-term bioassays in at least 1 species. This compendium is based primarily on experiments in rats or mice; results in hamsters, monkeys, and dogs are also reported. The compendium can be used to identify chemicals that induce tumors at particular sites and to determine whether target sites are the same for chemicals positive in more than 1 species. The source of information is the Carcinogenic Potency Database (CPDB). which includes results of 6073 experiments on 1458 chemicals (positive or negative for carcinogenicity) that have been reported in Technical Reports of the National Cancer Institute/National Toxicology Program or in papers in the general published literature. The published CPDB includes detailed analyses of each test and citations. The CPDB is publicly available in several formats (http://potency.berkeley.edu). Chemical carcinogens are reported for 35 different target organs in rats or mice. Target organs in humans are also summarized for 82 agents that have been evaluated as human carcinogens at a particular target site by the International Agency for Research on Cancer (IARC). Comparisons are provided of target organs for mutagens versus nonmutagens and rats versus mice.


Assuntos
Carcinógenos/toxicidade , Bases de Dados Factuais , Neoplasias Experimentais/induzido quimicamente , Animais , Testes de Carcinogenicidade/métodos , Cricetinae , Cães , Haplorrinos , Camundongos , Especificidade de Órgãos , Ratos
2.
Environ Health Perspect ; 107 Suppl 4: 527-600, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10421768

RESUMO

The Carcinogenic Potency Database (CPDB) is a systematic and unifying analysis of results of chronic, long-term cancer tests. This paper presents a supplemental plot of the CPDB, including 513 experiments on 157 test compounds published in the general literature in 1993 and 1994 and in Technical Reports of the National Toxicology Program in 1995 and 1996. The plot standardizes the experimental results (whether positive or negative for carcinogenicity), including qualitative data on strain, sex, route of compound administration, target organ, histopathology, and author's opinion and reference to the published paper, as well as quantitative data on carcinogenic potency, statistical significance, tumor incidence, dose-response curve shape, length of experiment, duration of dosing, and dose rate. A numerical description of carcinogenic potency, the TD(subscript)50(/subscript), is estimated for each set of tumor incidence data reported. When added to the data published earlier, the CPDB now includes results of 5,620 experiments on 1,372 chemicals that have been reported in 1,250 published papers and 414 National Cancer Institute/National Toxicology Program Technical Reports. The plot presented here includes detailed analyses of 25 chemicals tested in monkeys for up to 32 years by the National Cancer Institute. Half the rodent carcinogens that were tested in monkeys were not carcinogenic, despite usually strong evidence of carcinogenicity in rodents and/or humans. Our analysis of possible explanatory factors indicates that this result is due in part to the fact that the monkey studies lacked power to detect an effect compared to standard rodent bioassays. Factors that contributed to the lack of power are the small number of animals on test; a stop-exposure protocol for model rodent carcinogens; in a few cases, toxic doses that resulted in stoppage of dosing or termination of the experiment; and in a few cases, low doses administered to monkeys or early termination of the experiment even though the doses were not toxic. Among chemicals carcinogenic in both monkeys and rodents, there is some support for target site concordance, but it is primarily restricted to liver tumors. Potency values are highly correlated between rodents and monkeys. The plot in this paper can be used in conjunction with the earlier results published in the CRC Handbook of Carcinogenic Potency and Genotoxicity Databases [Gold LS, Zeiger E, eds. Boca Raton FL:CRC Press, 1997] and with our web site (http://potency.berkeley.edu), which includes a guide to the plot of the database, a complete description of the numerical index of carcinogenic potency (TD50), and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. Two summary tables permit easy access to the literature of animal cancer tests by target organ and by chemical. For readers using the CPDB extensively, a combined plot on diskette or other format is available from the first author. It includes all results published earlier and in this paper, ordered alphabetically by chemical. A SAS database is also available.


Assuntos
Carcinógenos/toxicidade , Bases de Dados Factuais , Animais , Animais de Laboratório , Bibliografias como Assunto , Bioensaio , Haplorrinos , Dose Letal Mediana , Camundongos , Ratos
3.
Cancer Lett ; 117(2): 195-207, 1997 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-9377547

RESUMO

Much of the public perceives that exposure to synthetic pesticide residues in the diet is a major cause of cancer. The National Research Council (NRC), in a 1987 report, Regulating Pesticides in Food: The Delaney Paradox, evaluated cancer risks for 29 pesticides that are rodent carcinogens and estimated that the risks for 23 were greater than one-in-a-million. In contrast, our group has ranked possible carcinogenic hazards from a variety of human exposures to rodent carcinogens using the HERP (Human Exposure/Rodent Potency) index, and found that dietary residues of synthetic pesticides ranked low. This paper evaluates the disparities in these analyses by examining the two components of risk assessment: carcinogenic potency in rodents and human exposure. Potency estimates based on rodent bioassay data are shown to be similar whether calculated, as in the NRC report, as the regulatory q1* or as TD50. In contrast, estimates of dietary exposure to residues of synthetic pesticides vary enormously, depending on whether they are based on the Theoretical Maximum Residue Contribution (TMRC) calculated by the Environmental Protection Agency vs. the average dietary residues measured by the Food and Drug Administration in the Total Diet Study (TDS). The TMRC is the theoretical maximum human exposure anticipated under the most severe field application conditions, which are far greater than dietary residues measured in the TDS. Several independent exposure studies suggest that the FDA dietary residues are reasonable estimates of average human exposures, whereas TMRC values are large overestimates. Using standard methodology and measured dietary residues in the TDS, the estimate of excess cancer risk from average lifetime exposure to synthetic pesticide residues in the diet appears to be less than one-in-a-million for each of the ten pesticides for which adequate data were available.


Assuntos
Neoplasias/induzido quimicamente , Resíduos de Praguicidas , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental , Humanos , Fatores de Risco , Estados Unidos , United States Environmental Protection Agency
4.
Environ Health Perspect ; 103 Suppl 8: 3-122, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8741772

RESUMO

This paper presents two types of information from the Carcinogenic Potency Database (CPDB): (a) the sixth chronological plot of analyses of long-term carcinogenesis bioassays, and (b) an index to chemicals in all six plots, including a summary compendium of positivity and potency for each chemical (Appendix 14). The five earlier plots of the CPDB have appeared in this journal, beginning in 1984 (1-5). Including the plot in this paper, the CPDB reports results of 5002 experiments on 1230 chemicals. This paper includes bioassay results published in the general literature between January 1989 and December 1990, and in Technical Reports of the National Toxicology Program between January 1990 and June 1993. Analyses are included on 17 chemicals tested in nonhuman primates by the Laboratory of Chemical Pharmacology, National Cancer Institute. This plot presents results of 531 long-term, chronic experiments of 182 test compounds and includes the same information about each experiment in the same plot format as the earlier papers: the species and strain of test animal, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. We refer the reader to the 1984 publications (1,6,7) for a detailed guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The six plots of the CPDB are to be used together since results of individual experiments that were published earlier are not repeated. Appendix 14 is designed to facilitate access to results on all chemicals. References to the published papers that are the source of experimental data are reported in each of the published plots. For readers using the CPDB extensively, a combined plot is available of all results from the six separate plot papers, ordered alphabetically by chemical; the combined plot in printed form or on computer tape or diskette is available from the first author. A SAS database is also available.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Bases de Dados Factuais , Animais , Bioensaio , Feminino , Dose Letal Mediana , Masculino , Fatores de Tempo
5.
Cancer Lett ; 83(1-2): 21-9, 1994 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8062218

RESUMO

Results in the Carcinogenic Potency Database (CPDB) on 11 mutagenic heterocyclic amines (HA) tested for carcinogenicity in rats, mice and cynomolgus monkeys are compared to results for other chemicals. An analysis of strength of evidence of carcinogenicity for HA vs. other mutagenic carcinogens and vs. all rodent carcinogens, indicates strong carcinogenicity of HA in terms of positivity rates and multiplicity of target sites. The liver is the most frequent target site in each species. Despite several target sites in each species, concordance in target sites between rats and mice is restricted to the liver for each HA except one. In cynomolgus monkeys, liver tumors have been induced rapidly by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Human exposures to HA in cooked animal foods are small, in the low ppb range. A comparison of possible carcinogenic hazards from a variety of exposures to rodent carcinogens in the American diet is presented, using an index (Human Exposure/Rodent Potency, HERP) that relates human exposure to carcinogenic potency in rodents. Results indicate that there is a large background of exposures to naturally-occurring rodent carcinogens in typical portions of common foods, and that possible hazards from HA rank below those of most natural pesticides and products of cooking or food preparation; synthetic pesticide residues also rank low.


Assuntos
Carcinógenos , Imidazóis/toxicidade , Indóis/toxicidade , Isoquinolinas/toxicidade , Mutagênicos , Neoplasias Experimentais/induzido quimicamente , Animais , Bioensaio , Feminino , Sistemas de Informação , Masculino , Camundongos , Quinolinas/toxicidade , Ratos
6.
Environ Health Perspect ; 100: 65-168, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8354183

RESUMO

This paper is the fifth plot of the Carcinogenic Potency Database (CPDB) that first appeared in this journal in 1984 (1-5). We report here results of carcinogenesis bioassays published in the general literature between January 1987 and December 1988, and in technical reports of the National Toxicology Program between July 1987 and December 1989. This supplement includes results of 412 long-term, chronic experiments of 147 test compounds and reports the same information about each experiment in the same plot format as the earlier papers: the species and strain of test animal, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. We refer the reader to the 1984 publications (1,5,6) for a guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The five plots of the database are to be used together, as results of individual experiments that were published earlier are not repeated. In all, the five plots include results of 4487 experiments on 1136 chemicals. Several analyses based on the CPDB that were published earlier are described briefly, and updated results based on all five plots are given for the following earlier analyses: the most potent TD50 value by species, reproducibility of bioassay results, positivity rates, and prediction between species.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Carcinógenos/toxicidade , Bases de Dados Factuais , Animais , Bioensaio
7.
Risk Anal ; 12(4): 579-88, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1480802

RESUMO

Prediction of human cancer risk from the results of rodent bioassays requires two types of extrapolation: a qualitative extrapolation from short-lived rodent species to long-lived humans, and a quantitative extrapolation from near-toxic doses in the bioassay to low-level human exposures. Experimental evidence on the accuracy of prediction between closely related species tested under similar experimental conditions (rats, mice, and hamsters) indicates that: (1) if a chemical is positive in one species, it will be positive in the second species about 75% of the time; however, since about 50% of test chemicals are positive in each species, by chance alone one would expect a predictive value between species of about 50%. (2) If a chemical induces tumors in a particular target organ in one species, it will induce tumors in the same organ in the second species about 50% of the time. Similar predictive values are obtained in an analysis of prediction from humans to rats or from humans to mice for known human carcinogens. Limitations of bioassay data for use in quantitative extrapolation are discussed, including constraints on both estimates of carcinogenic potency and of the dose-response in experiments with only two doses and a control. Quantitative extrapolation should be based on an understanding of mechanisms of carcinogenesis, particularly mitogenic effects that are present at high and not low doses.


Assuntos
Testes de Carcinogenicidade/estatística & dados numéricos , Neoplasias/induzido quimicamente , Animais , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Humanos , Camundongos , Neoplasias Experimentais/induzido quimicamente , Ratos , Fatores de Risco , Especificidade da Espécie
8.
Science ; 258(5080): 261-5, 1992 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-1411524

RESUMO

The human diet contains an enormous background of natural chemicals, such as plant pesticides and the products of cooking, that have not been a focus of carcinogenicity testing. A broadened perspective that includes these natural chemicals is necessary. A comparison of possible hazards for 80 daily exposures to rodent carcinogens from a variety of sources is presented, using an index (HERP) that relates human exposure to carcinogenic potency in rodents. A similar ordering would be expected with the use of standard risk assessment methodology for the same human exposure values. Results indicate that, when viewed against the large background of naturally occurring carcinogens in typical portions of common foods, the residues of synthetic pesticides or environmental pollutants rank low. A similar result is obtained in a separate comparison of 32 average daily exposures to natural pesticides and synthetic pesticide residues in the diet. Although the findings do not indicate that these natural dietary carcinogens are important in human cancer, they cast doubt on the relative importance for human cancer of low-dose exposures to synthetic chemicals.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos , Contaminação de Alimentos , Roedores , Animais , Carcinógenos/administração & dosagem , Carcinógenos/análise , Exposição Ambiental , Poluentes Ambientais/efeitos adversos , Análise de Alimentos , Humanos , Resíduos de Praguicidas/efeitos adversos , Fatores de Risco
9.
Environ Health Perspect ; 96: 11-5, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1820251

RESUMO

The Carcinogenic Potency Database (CPDB) is an easily accessible, standardized resource of positive and negative long-term animal cancer tests. The CPDB has been published in four earlier papers that include results for approximately 4000 experiments on 1050 chemicals. This paper describes the CPDB: goals, inclusion criteria, fields of information, and published plot format. It also presents an overview of our published papers using the CPDB. The CPDB as published in plot format readily permits comparisons of carcinogenic potency and many other aspects of cancer tests, including for each experiment the species and strain of test animals, the route and duration of compound administration, dose level and other aspects of experimental protocol, histopathology and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, author's opinion about carcinogenicity, and literature citation. A combined plot of all results from the four separate papers, which is ordered alphabetically by chemical, is available from L. S. Gold, in printed form or on computer tape or diskette. A computer readable (SAS) database is also available. The overview of papers includes descriptions of work on methods of estimating carcinogenic potency, reproducibility of results in near-replicate cancer tests, correlation in potency between species, ranking possible carcinogenic hazards, comparison of positivity and target organ in rats and mice, comparison of mutagens and nonmutagens, proportion of chemicals positive in animal tests, natural compared to synthetic chemicals, and mechanistic issues in interspecies extrapolation.


Assuntos
Carcinógenos , Bases de Dados Factuais , National Institutes of Health (U.S.) , Toxicologia , Animais , Testes de Carcinogenicidade , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade , Neoplasias Experimentais/induzido quimicamente , Reprodutibilidade dos Testes , Roedores , Especificidade da Espécie , Estados Unidos
10.
Environ Health Perspect ; 93: 233-46, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1773795

RESUMO

A compendium of carcinogenesis bioassay results organized by target organ is presented for 533 chemicals that are carcinogenic in at least one species. This compendium is based primarily on experiments in rats or mice; results in hamsters, nonhuman primates, and dogs are also reported. The compendium can be used to identify chemicals that induce tumors at particular sites, and to determine whether target sites are the same for chemicals positive in more than one species. The Carcinogenic Potency Database (CPDB), which includes results of 3969 experiments, is used in the analysis. The published CPDB includes details on each test, and literature references. Chemical carcinogens are reported for 35 different target organs in rats or mice. More than 80% of the carcinogens in each of these species are positive in at least one of the 8 most frequent target sites: liver, lung, mammary gland, stomach, vascular system, kidney, hematopoietic system, and urinary bladder. An analysis is presented of how well one can predict the carcinogenic response in mice from results in rats, or vice versa. Among chemicals tested in both species, 76% of rat carcinogens are positive in mice, and 71% of mouse carcinogens are positive in rats. Prediction is less accurate to the same target site: 52% of rat carcinogens are positive in the same site in mice, and 48% of mouse carcinogens are positive in the same site in rats. The liver is the most frequent site in common between rats and mice.


Assuntos
Testes de Carcinogenicidade , Carcinógenos , Especificidade de Órgãos , Animais , Cricetinae , Bases de Dados Factuais , Cães , Camundongos , Neoplasias Experimentais/induzido quimicamente , Valor Preditivo dos Testes , Primatas , Ratos , Especificidade da Espécie
11.
Environ Health Perspect ; 84: 215-86, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2351123

RESUMO

This paper is the third chronological supplement to the Carcinogenic Potency Database that first appeared in this journal in 1984. We report here results of carcinogenesis bioassays published in the general literature between January 1985 and December 1986, and in Technical Reports of the National Toxicology Program between June 1986 and June 1987. This supplement includes results of 337 long-term, chronic experiments of 121 compounds, and reports the same information about each experiment in the same plot format as the earlier papers, e.g., the species and strain of animal, the route and duration of compound administration, dose level, and other aspects of experimental protocol, histopathology, and tumor incidence, TD50 (carcinogenic potency) and its statistical significance, dose response, opinion of the author about carcinogenicity, and literature citation. The reader needs to refer to the 1984 publication for a guide to the plot of the database, a complete description of the numerical index of carcinogenic potency, and a discussion of the sources of data, the rationale for the inclusion of particular experiments and particular target sites, and the conventions adopted in summarizing the literature. The four plots of the database are to be used together as results published earlier are not repeated. In all, the four plots include results for approximately 4000 experiments on 1050 chemicals. Appendix 14 of this paper is an alphabetical index to all chemicals in the database and indicates which plot(s) each chemical appears in. A combined plot of all results from the four separate papers, that is ordered alphabetically by chemical, is available from the first author, in printed form or on computer tape or diskette.


Assuntos
Carcinógenos/toxicidade , Sistemas de Informação , Testes de Carcinogenicidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...