Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(20): 12985-91, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27140722

RESUMO

Here, we introduce a systematic strategy to prepare composite materials for wellbore reinforcement using graphene nanoribbons (GNRs) in a thermoset polymer irradiated by microwaves. We show that microwave absorption by GNRs functionalized with poly(propylene oxide) (PPO-GNRs) cured the composite by reaching 200 °C under 30 W of microwave power. Nanoscale PPO-GNRs diffuse deep inside porous sandstone and dramatically enhance the mechanics of the entire structure via effective reinforcement. The bulk and the local mechanical properties measured by compression and nanoindentation mechanical tests, respectively, reveal that microwave heating of PPO-GNRs and direct polymeric curing are major reasons for this significant reinforcement effect.

2.
ACS Nano ; 9(6): 5868-75, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25978090

RESUMO

Heteroatom-doped graphene materials have been intensely studied as active electrodes in energy storage devices. Here, we demonstrate that boron-doped porous graphene can be prepared in ambient air using a facile laser induction process from boric acid containing polyimide sheets. At the same time, active electrodes can be patterned for flexible microsupercapacitors. As a result of boron doping, the highest areal capacitance of as-prepared devices reaches 16.5 mF/cm(2), 3 times higher than nondoped devices, with concomitant energy density increases of 5-10 times at various power densities. The superb cyclability and mechanical flexibility of the device are well-maintained, showing great potential for future microelectronics made from this boron-doped laser-induced graphene material.

3.
ACS Appl Mater Interfaces ; 7(12): 7041-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25757413

RESUMO

Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.9 eV) to orange-red (2.05 eV), depending on size, functionalities and defects. These findings provide a deeper insight into the nature of coal-derived GQDs and demonstrate a scalable method for production of GQDs with the desired bandgaps.

4.
ACS Nano ; 7(8): 7193-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23859629

RESUMO

Graphene is an atomically thin, transparent, and conductive electrode material of interest for sensors and energy conversion and storage devices, among others. Fully realizing its potential will require robust and general methods to anchor active functionality onto its pristine basal plane. Such strategies should not utilize covalent bond formation, which disrupts the graphene's π-electron system, from which most of its desirable properties arise. We recently introduced a tripodal binding motif, which forms robust monolayers on graphene capable of immobilizing active proteins and preventing their denaturation. Here we describe structure-property relationships for a series of tripod binding groups with "feet" of different sizes. Each derivative adsorbs strongly (ΔGads ≈ -39 kJ mol(-1)) to graphene's basal plane, yet the resulting monolayers exhibit kinetic stabilities that vary over 2 orders of magnitude and molecular densities that vary by a factor of 2. This study identifies phenanthrene as a superior anchor relative to pyrene on the basis of its increased monolayer density and similar kinetic stability. We also demonstrate that varying the length of the methylene linkers between the feet and tripodal core does not affect binding substantially. These results represent the first demonstration of structure-property relationships in the assembly of molecular adsorbates on graphene and provide a paradigm for designing effective graphene binding motifs.


Assuntos
Grafite/química , Nanotecnologia/métodos , Adsorção , Técnicas Biossensoriais , Eletroquímica , Eletrodos , Cinética , Nanoestruturas/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termodinâmica
6.
Anal Chem ; 85(5): 2754-9, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23363062

RESUMO

Graphene's suite of useful properties makes it of interest for use in biosensors. However, graphene interacts strongly with hydrophobic components of biomolecules, potentially altering their conformation and disrupting their biological activity. We have immobilized the protein Concanavalin A onto a self-assembled monolayer of multivalent tripodal molecules on single-layer graphene. We used a quartz crystal microbalance (QCM) to show that tripod-bound Concanavalin A retains its affinity for polysaccharides containing α-D-glucopyrannosyl groups as well as for the α-D-mannopyranosyl groups located on the cell wall of Bacillus subtilis. QCM measurements on unfunctionalized graphene indicate that adsorption of Concanavalin A onto graphene is accompanied by near-complete loss of these functions, suggesting that interactions with the graphene surface induce deleterious structural changes to the protein. Given that Concanavalin A's tertiary structure is thought to be relatively robust, these results suggest that other proteins might also be denatured upon adsorption onto graphene, such that the graphene-biomolecule interface must be considered carefully. Multivalent tripodal binding groups address this challenge by anchoring proteins without loss of function and without disrupting graphene's desirable electronic structure.


Assuntos
Concanavalina A/química , Concanavalina A/metabolismo , Grafite/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Adsorção , Bacillus subtilis/citologia , Canavalia/química , Parede Celular/metabolismo , Células Imobilizadas/metabolismo , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/metabolismo
7.
J Am Chem Soc ; 134(14): 6224-36, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22409580

RESUMO

The surface diffusion of a cobalt bis-terpyridine, Co(tpy)(2)-containing tripodal compound (1·2PF(6)), designed to noncovalently adsorb to graphene through three pyrene moieties, has been studied by scanning electrochemical microscopy (SECM) on single-layer graphene (SLG). An initial boundary approach was designed in which picoliter droplets (radii ~15-50 µm) of the tripodal compound were deposited on an SLG electrode, yielding microspots in which a monolayer of the tripodal molecules is initially confined. The time evolution of the electrochemical activity of these spots was detected at the aqueous phosphate buffer/SLG interface by SECM, in both generation/collection (G/C) and feedback modes. The tripodal compound microspots exhibit differential reactivity with respect to the underlying graphene substrate in two different electrochemical processes. For example, during the oxygen reduction reaction, adsorbed 1·2PF(6) tripodal molecules generate more H(2)O(2) than the bare graphene surface. This product was detected with spatial and temporal resolution using the SECM tip. The tripodal compound also mediates the oxidation of a Fe(II) species, generated at the SECM tip, under conditions in which SLG shows slow interfacial charge transfer. In each case, SECM images, obtained at increasing times, show a gradual decrease in the electrochemical response due to radial diffusion of the adsorbed molecules outward from the microspots onto the unfunctionalized areas of the SLG surface. This response was fit to a simple surface diffusion model, which yielded excellent agreement between the two experiments for the effective diffusion coefficients: D(eff) = 1.6 (±0.9) × 10(-9) cm(2)/s and D(eff) = 1.5 (±0.6) × 10(-9) cm(2)/s for G/C and feedback modes, respectively. Control experiments ruled out alternative explanations for the observed behavior, such as deactivation of the Co(II/III) species or of the SLG, and verified that the molecules do not diffuse when confined to obstructed areas. The noncovalent nature of the surface functionalization, together with the surface reactivity and mobility of these molecules, provides a means to couple the superior electronic properties of graphene to compounds with enhanced electrochemical performance, a key step toward developing dynamic electrode surfaces for sensing, electrocatalysis, and electronic applications.

8.
J Am Chem Soc ; 133(44): 17614-7, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21988499

RESUMO

Single-layer graphene is a newly available conductive material ideally suited for forming well-defined interfaces with electroactive compounds. Aromatic moieties typically interact with the graphene surface to maximize van der Waals interactions, predisposing most compounds to lie flat on its basal plane. Here we describe a tripodal motif that binds multivalently to graphene through three pyrene moieties and projects easily varied functionality away from the surface. The thermodynamic and kinetic binding parameters of a tripod bearing a redox-active Co(II) bis-terpyridyl complex were investigated electrochemically. The complex binds strongly to graphene and forms monolayers with a molecular footprint of 2.3 nm(2) and a ΔG(ads) = -38.8 ± 0.2 kJ mol(-1). Its monolayers are stable in fresh electrolyte for more than 12 h and desorb from graphene 1000 times more slowly than model compounds bearing a single aromatic binding group. Differences in the heterogeneous rate constants of electron transfer between the two compounds suggest that the tripod projects its redox couple away from the graphene surface.


Assuntos
Grafite/química , Compostos Organometálicos/síntese química , Sítios de Ligação , Estrutura Molecular , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...