Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Vasc Interv Radiol ; 34(4): 544-555.e11, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36379286

RESUMO

PURPOSE: To update normative data on fluoroscopy dose indices in the United States for the first time since the Radiation Doses in Interventional Radiology study in the late 1990s. MATERIALS AND METHODS: The Dose Index Registry-Fluoroscopy pilot study collected data from March 2018 through December 2019, with 50 fluoroscopes from 10 sites submitting data. Primary radiation dose indices including fluoroscopy time (FT), cumulative air kerma (Ka,r), and kerma area product (PKA) were collected for interventional radiology fluoroscopically guided interventional (FGI) procedures. Clinical facility procedure names were mapped to the American College of Radiology (ACR) common procedure lexicon. Distribution parameters including the 10th, 25th, 50th, 75th, 95th, and 99th percentiles were computed. RESULTS: Dose indices were collected for 70,377 FGI procedures, with 50,501 ultimately eligible for analysis. Distribution parameters are reported for 100 ACR Common IDs. FT in minutes, Ka,r in mGy, and PKA in Gy-cm2 are reported in this study as (n; median) for select ACR Common IDs: inferior vena cava filter insertion (1,726; FT: 2.9; Ka,r: 55.8; PKA: 14.19); inferior vena cava filter removal (464; FT: 5.7; Ka,r: 178.6; PKA: 34.73); nephrostomy placement (2,037; FT: 4.1; Ka,r: 39.2; PKA: 6.61); percutaneous biliary drainage (952; FT: 12.4; Ka,r: 160.5; PKA: 21.32); gastrostomy placement (1,643; FT: 3.2; Ka,r: 29.1; PKA: 7.29); and transjugular intrahepatic portosystemic shunt placement (327; FT: 34.8; Ka,r: 813.0; PKA: 181.47). CONCLUSIONS: The ACR DIR-Fluoro pilot has provided state-of-the-practice statistics for radiation dose indices from IR FGI procedures. These data can be used to prioritize procedures for radiation optimization, as demonstrated in this work.


Assuntos
Radiografia Intervencionista , Radiologia Intervencionista , Humanos , Doses de Radiação , Projetos Piloto , Fluoroscopia , Radiologia Intervencionista/métodos , Sistema de Registros , Radiografia Intervencionista/efeitos adversos
2.
J Vasc Interv Radiol ; 34(4): 556-562.e3, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36031041

RESUMO

PURPOSE: To compare radiation dose index distributions for fluoroscopically guided interventions in interventional radiology from the American College of Radiology (ACR) Fluoroscopy Dose Index Registry (DIR-Fluoro) pilot to those from the Radiation Doses in Interventional Radiology (RAD-IR) study. MATERIALS AND METHODS: Individual and grouped ACR Common identification numbers (procedure types) from the DIR-Fluoro pilot were matched to procedure types in the RAD-IR study. Fifteen comparisons were made. Distribution parameters, including the 10th, 25th, 50th, 75th, and 95th percentiles, were compared for fluoroscopy time (FT), cumulative air kerma (Ka,r), and kerma area product (PKA). Two derived indices were computed using median dose indices. The procedure-averaged reference air kerma rate (Ka,r¯) was computed as Ka,r / FT. The procedure-averaged x-ray field size at the reference point (Ar) was computed as PKA / (Ka,r × 1,000). RESULTS: The median FT was equally likely to be higher or lower in the DIR-Fluoro pilot as it was in the RAD-IR study, whereas the maximum FT was almost twice as likely to be higher in the DIR-Fluoro pilot than it was in the RAD-IR study. The median Ka,r was lower in the DIR-Fluoro pilot for all procedures, as was median PKA. The maximum Ka,r and PKA were more often higher in the DIR-Fluoro pilot than in the RAD-IR study. Ka,r¯ followed the same pattern as Ka,r, whereas Ar was often greater in DIR-Fluoro. CONCLUSIONS: The median dose indices have decreased since the RAD-IR study. The typical Ka,r rates are lower, a result of the use of lower default dose rates. However, opportunities for quality improvement exist, including renewed focus on tight collimation of the imaging field of view.


Assuntos
Radiografia Intervencionista , Radiologia Intervencionista , Humanos , Radiologia Intervencionista/métodos , Doses de Radiação , Fluoroscopia , Radiografia Intervencionista/efeitos adversos , Sistema de Registros
4.
J Vasc Interv Radiol ; 31(10): 1545-1550.e1, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861568

RESUMO

PURPOSE: To characterize the accuracy and consistency of fluoroscope dose index reporting and report rates of occupational radiation safety hardware availability and use, trainee participation in procedures, and optional hardware availability at pilot sites for the American College of Radiology (ACR) Fluoroscopy Dose Index Registry (DIR). MATERIALS AND METHODS: Nine institutions participated in the registry pilot, providing fluoroscopic technical and clinical practice data from 38 angiographic C-arm-type fluoroscopes. These data included measurements of the procedure table and mattress transmission factors and accuracy measurements of the reference-point air kerma (Ka,r) and air kerma-area product (PKA). The accuracy of the radiation dose indices were analyzed for variation over time by 1-way analysis of variance (ANOVA). Sites also self-reported information on availability and use of radiation safety hardware, hardware configuration of fluoroscopes, and trainee participation in procedures. RESULTS: All Ka,r and PKA measurements were within the ±35% regulatory limit on accuracy. The mean absolute difference between correction factors for a given system in fluoroscopic and acquisition mode was 0.03 (95% confidence interval, 0.03-0.03). For the 28 fluoroscopic imaging planes that provided data for 3 time points, ANOVA yielded an F value of 0.134 with an F-critical value of 3.109 (P = .875). CONCLUSIONS: This publication provides the technical and clinical framework pertaining to the ACR Fluoroscopy DIR pilot and offers necessary context for future analysis of the clinical procedure radiation-dose data collected.


Assuntos
Exposição Ocupacional , Doses de Radiação , Exposição à Radiação , Monitoramento de Radiação , Radiografia Intervencionista , Fluoroscopia , Humanos , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Projetos Piloto , Exposição à Radiação/efeitos adversos , Radiografia Intervencionista/efeitos adversos , Sistema de Registros , Medição de Risco , Fatores de Risco , Espalhamento de Radiação , Estados Unidos
5.
Pain Med ; 20(5): 971-978, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215781

RESUMO

OBJECTIVE: The goal of the study was to determine the potential impact of system inaccuracies and table attenuation on fluoroscope-reported dose values. DESIGN: An Institutional Review Board-approved study was conducted to collect detailed acquisition and patient exposure data for fluoroscopy-guided lumbar epidural injections. BACKGROUND: System-reported dosimetry values, especially the air Kinetic Energy Released per unit MAss and dose-area product metrics, are routinely used for estimating the radiation burden to patients undergoing fluoroscopy-guided procedures. However, these metrics do not account for other factors, such as acquisition geometry, where the table may attenuate a substantial fraction of the x-ray intensity, and system dosimetry inaccuracies, which are only required to be accurate within ±35%. METHODS: Acquisition data from 46 patients undergoing fluoroscopy-guided lumbar epidural injections were collected to better estimate the true incident dose-area product. Gantry angles, x-ray technique factors, and field sizes were collected to characterize each procedure. Additionally, the fluoroscope dosimetry accuracy and table attenuation properties were evaluated as a function of kVp to generate the correction factors necessary for accurate dosimetry estimates. RESULTS: The system-reported values overestimated the total patient entrance dose-area product by an average of 34% (13-44%). Errors may be substantially higher for systems with less accurate fluoroscopes or more anterior-posterior projections. Correcting system-reported dosimetry values for systematic inaccuracies and variability can substantially improve fluoroscopic dose values. CONCLUSIONS: Including corrections for system output inaccuracies and acquisition factors such as table attenuation is necessary for any reliable assessment of radiation burden to patients associated with fluoroscopy-guided procedures.


Assuntos
Injeções Epidurais/métodos , Doses de Radiação , Radiografia Intervencionista/métodos , Radiometria/métodos , Corticosteroides/administração & dosagem , Fluoroscopia/métodos , Humanos , Região Lombossacral
6.
Catheter Cardiovasc Interv ; 92(7): E471-E477, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30208245

RESUMO

OBJECTIVES: To evaluate differences in radiation dose and image quality across institutions, fluoroscope vendors and generations of fluoroscopes for pediatric cardiac catheterization. BACKGROUND: Increased recognition of the potentially harmful effects of ionizing radiation has spurred technological advances in fluoroscopes, as well as increased focus on optimizing fluoroscope performance. There is currently little understanding of variability in the dose-image quality relationship across institutions, fluoroscope vendor and/or generation of equipment. METHODS: We evaluated latest generation fluoroscopes from Phillips, Siemens, GE, and Toshiba, and an older generation Phillips fluoroscope (release date 2003) at three different institutions. Radiation dose was measured using an anthropomorphic dose-assessment phantom with effective dose in mSv estimated from Monte Carlo simulations. Image quality phantom images were scored on a 12-point scale by three blinded reviewers. RESULTS: Fluoroscope effective doses ranged from 0.04 to 0.14 mSv/1,000 pulses for fluoroscopy with associated composite image quality scores ranging from 8.0 ± 0.6 to 10.4 ± 1.3. For cineangiography, effective doses ranged from 0.17 to 0.57 mSv/1,000 frames with image quality scores ranging from 10.1 ± 0.3 to 11.1 ± 0.3. There was modest correlation between effective dose and image quality (r = 0.67, P = 0.006). The older generation fluoroscope delivered consistently higher doses than the newer generation systems (2.3- to 3.5-fold higher for fluoroscopy; 1.1- to 3.4-fold higher for cineangiography) without appreciable differences in image quality. CONCLUSION: Technological advances have markedly improved fluoroscope performance. Comparing latest generation systems across vendors and institutions, we found variability in the dose-IQ relationship and speculate that this reflects both equipment and institutional optimization practices.


Assuntos
Cateterismo Cardíaco/instrumentação , Cineangiografia/instrumentação , Angiografia Coronária/instrumentação , Doses de Radiação , Exposição à Radiação , Radiografia Intervencionista/instrumentação , Cateterismo Cardíaco/efeitos adversos , Cineangiografia/efeitos adversos , Simulação por Computador , Angiografia Coronária/efeitos adversos , Desenho de Equipamento , Fluoroscopia/instrumentação , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Valor Preditivo dos Testes , Exposição à Radiação/efeitos adversos , Monitoramento de Radiação , Radiografia Intervencionista/efeitos adversos , Reprodutibilidade dos Testes
7.
J Xray Sci Technol ; 26(4): 535-551, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689765

RESUMO

Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is important, especially when using multiple sources, novel detector and non-traditional trajectories. Dedicated clinical breast CT (BCT) systems therefore should be similarly evaluated. In this study, uniform cylindrical phantoms filled with various uniform density fluids were used to characterize differences in HU values between simple circular and complex 3D (saddle) orbits. Based on ACR recommendations, the HU accuracy, center-to-edge variability within a slice, and overall variability within the reconstructed volume were characterized for simple and complex acquisitions possible on a single versatile BCT system. Results illustrate the statistically significantly better performance of the saddle orbit, especially close to the chest and nipple regions of what would clinically be a pendant breast volume. The incomplete cone beam acquisition of a simple circular orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values throughout the reconstructed volumes. This study further establishes the advantages of using 3D acquisition trajectories for breast CT as well as other applications by demonstrating the robustness of HU values throughout large reconstructed volumes.


Assuntos
Mama/diagnóstico por imagem , Imageamento Tridimensional/métodos , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Feminino , Humanos , Imagens de Fantasmas
8.
J Med Imaging (Bellingham) ; 4(3): 033502, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28924570

RESUMO

Stand-alone cone beam computed tomography (CT) and single-photon emission computed tomography (SPECT) systems capable of complex acquisition trajectories have previously been developed for breast imaging. Fully three-dimensional (3-D) motions of SPECT systems provide views into the chest wall and throughout the entire volume. The polar tilting capability of the CBCT system has shown improvement in sampling close to the chest wall, while eliminating cone beam artifacts. Here, a single hybrid SPECT-CT system, with each individual modality capable of independently traversing complex trajectories around a common pendant breast volume, was developed. We present the practical implementation of this design and preliminary results of the CT system. The fully 3-D SPECT was nested inside the suspended CT gantry and oriented perpendicular to the CT source-detector pair. Both subsystems were positioned on a rotation stage, with the combined polar and azimuthal motions enabling spherical trajectories. Six trajectories were used for initial evaluation of the tilt capable CT system. The developed system can achieve polar tilt angles with a [Formula: see text] positioning error and no hysteresis. Initial imaging results demonstrate that additional off-axis projection views of various geometric resolution phantoms facilitate more complete sampling, more consistent attenuation value recovery, and markedly improved reconstructions. This system could have various applications in diagnostic or therapeutic breast imaging.

9.
J Xray Sci Technol ; 25(3): 373-389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28157120

RESUMO

OBJECTIVE: The purpose of this study was to utilize a dedicated breast CT system using a 2D beam stop array to physically evaluate the scatter to primary ratios (SPRs) of different geometric phantoms and prospectively acquired clinical patient data. METHODS: Including clinically unrealizable compositions of 100% glandular and 100% fat, projection images were acquired using three geometrically different phantoms filled with fluids simulating breast tissue. The beam stop array method was used for measuring scatter in projection space, and creating the scatter corrected primary images. 2D SPRs were calculated. Additionally, a new figure of merit, the 3D normalized scatter contribution (NSC) volumes were calculated. RESULTS: The 2D SPR values (0.52-1.10) were primarily dependent on phantom geometry; a secondary dependence was due to their uniform density; 2D SPRs were low frequency and smoothly varying in the uniformly filled phantoms. SPRs of clinical patient data followed similar trends as phantoms, but with noticeable deviations and high frequency components due to the heterogeneous distribution of glandular tissue. The maximum measured patient 2D SPRs were all <0.6, even for the largest diameter breast. These results demonstrate modest scatter components with changing object geometries and densities; the 3D NSC volumes with higher frequency components help visualize scatter distribution throughout the reconstructed image volumes. Furthermore, the SPRs in the heterogeneous clinical breast cases were underestimated by the equivalent density, uniformly filled phantoms. CONCLUSIONS: These results provide guidance on the use of uniformly distributed density and differently shaped phantoms when considering simulations. They also clearly demonstrate that results from patients can vary considerably from 2D SPRs of uniformly simulated phantoms.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Espalhamento de Radiação , Raios X
10.
Med Phys ; 42(8): 4497-510, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233179

RESUMO

PURPOSE: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient's chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. METHODS: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm(3) voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50-50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. RESULTS: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. CONCLUSIONS: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Mamografia/métodos , Biomarcadores Farmacológicos , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/instrumentação , Imageamento Tridimensional/instrumentação , Mamografia/instrumentação , Modelos Biológicos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Tungstênio , Água
11.
J Med Imaging (Bellingham) ; 2(3): 033504, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26839906

RESUMO

The objective was to characterize the changes seen from incident Monte Carlo-based scatter distributions in dedicated three-dimensional (3-D) breast single-photon emission computed tomography, with emphasis on the impact of scatter correction using the dual-energy window (DEW) method. Changes in scatter distributions with 3-D detector position were investigated for prone breast imaging with an ideal detector. Energy spectra within a high-energy scatter window measured from simulations were linearly fit, and the slope was used to characterize scatter distributions. The impact of detector position on the measured scatter fraction within various photopeak windows and the [Formula: see text] value (ratio of scatter within the photopeak and scatter energy windows) useful for scatter correction was determined. Results indicate that application of a single [Formula: see text] value with the DEW method in the presence of anisotropic object scatter distribution is not appropriate for trajectories including the heart and liver. The scatter spectra's slope demonstrates a strong correlation to measured [Formula: see text] values. Reconstructions of fixed-tilt 3-D acquisition trajectories with a single [Formula: see text] value show quantification errors up to 5% compared to primary-only reconstructions. However, a variable-tilt trajectory provides improved sampling and minimizes quantification errors, and thus allows for a single [Formula: see text] value to be used with the DEW method leading to more accurate quantification.

12.
J Oncol ; 2012: 146943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956950

RESUMO

A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 µCi/mL with no preferential uptake by glandular or fatty tissues.

13.
IEEE Nucl Sci Symp Conf Rec (1997) ; 2010: 2319-2324, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-25999683

RESUMO

Attenuation correction is necessary for SPECT quantification. There are a variety of methods to create attenuation maps. For dedicated breast SPECT imaging, it is unclear if either SPECT- or CT-based attenuation map would provide the most accurate quantification and whether or not segmenting the different tissue types will have an effect on the qunatification. For these experiments, 99mTc diluted in methanol and water was filled into geometric and anthropomorphic breast phantoms and was imaged with a dedicated dual-modality SPECT-CT scanner. SPECT images were collected using a compact CZT camera with various 3D acquisitions including vertical and 30° tilted parallel beam, and complex sinusoidal trajectories. CT images were acquired using a quasi-monochromatic x-ray source and CsI(T1) flat panel digital detector in a half-cone beam geometry. Measured scatter correction for SPECT and CT were implemented. To compare photon attenuation correction in the reconstructed SPECT images, various volumetric attenuation matrices were derived from 1) uniform SPECT, 2) uniform CT, and 3) segmented CT, populated with different attenuation coefficient values. Comparisons between attenuation masks using phantoms consisting of materials with different attenuation values show that at 140 keV the differences in the attenuation between materials do not affect the quantification as much as the size and alignment of the attenuation map. The CT-based attenuation maps give quantitative values 30% below the actual value, but are consistent. While the SPECT-based attenuation maps can provide within 10% accurate quantitative values, but are less consistent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...