Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(24): 245801, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32186281

RESUMO

A systematic study using neutron diffraction and magnetic susceptibility is reported on Mn substituted ferrimagnetic inverse spinel Ti1-x Mn x Co2O4 in the temperature interval 1.6 K [Formula: see text] T [Formula: see text] 300 K. Our neutron diffraction study reveals cooperative distortions of the TO6 octahedra in the Ti1-x Mn x Co2O4 system for all the Jahn-Teller active ions T = Mn3+ , Ti3+ and Co3+ , having the electronic configurations 3d 1, 3d 4 and 3d 6, respectively which are confirmed by the x-ray photoelectron spectroscopy. Two specific compositions (x = 0.2 and 0.4) have been chosen in this study because these two systems show unique features such as; (i) noncollinear Yafet-Kittel type magnetic ordering, and (ii) weak tetragonal distortion with c/a < 1, in which the apical bond length d c (T B -O) is longer than the equatorial bond length d ab (T B -O) due to the splitting of the e g level of Mn3+ ions into [Formula: see text] and [Formula: see text]. For the composition x = 0.4, the distortion in the T B O6 octahedra is stronger as compared to x = 0.2 because of the higher content of trivalent Mn. Ferrimagnetic ordering in Ti0.6Mn0.4Co2O4 and Ti0.8Mn0.2Co2O4 sets in at 110.3 and 78.2 K, respectively due to the presence of unequal magnetic moments of cations, where Ti3+ , Mn3+ , and Co3+ occupy the octahedral, whereas, Co2+ sits in the tetrahedral site. For both compounds an additional weak antiferromagnetic component could be observed lying perpendicular to the ferrimagnetic component. The analysis of static and dynamic magnetic susceptibilities combined with the heat-capacity data reveals a magnetic compensation phenomenon (MCP) at T COMP = 25.4 K in Ti0.8Mn0.2Co2O4 and a reentrant spin-glass behaviour in Ti0.6Mn0.4Co2O4 with a freezing temperature of ∼110.1 K. The MCP in this compound is characterized by sign reversal of magnetization and bipolar exchange bias effect below T COMP with its magnitude depending on the direction of external magnetic field and the cooling protocol.

2.
Phys Rev Lett ; 120(23): 237202, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932706

RESUMO

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate ß-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of ß-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.

3.
Phys Rev Lett ; 104(1): 016403, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20366375

RESUMO

The spin-liquid candidate kappa-(BEDT-TTF)2Cu2(CN)3 has been studied by measuring the uniaxial expansion coefficients alpha(i), the specific heat, and magnetic susceptibility. Special emphasis was placed on the mysterious anomaly around 6 K--a potential spin-liquid instability. Distinct and strongly anisotropic lattice effects have been observed at 6 K, clearly identifying this feature as a second-order phase transition. Owing to the large anomalies in alpha(i), the application of Grüneisen scaling has enabled us to determine the corresponding specific heat contribution and the entropy release. Comparison of the latter with available spin models suggests that spin degrees of freedom alone cannot account for the phase transition. Scenarios involving charge degrees of freedom are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...