Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1854, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424106

RESUMO

The XBB.1.5 variant of SARS-CoV-2 has rapidly achieved global dominance and exhibits a high growth advantage over previous variants. Preliminary reports suggest that the success of XBB.1.5 stems from mutations within its spike glycoprotein, causing immune evasion and enhanced receptor binding. We present receptor binding studies that demonstrate retention of binding contacts with the human ACE2 receptor and a striking decrease in binding to mouse ACE2 due to the revertant R493Q mutation. Despite extensive evasion of antibody binding, we highlight a region on the XBB.1.5 spike protein receptor binding domain (RBD) that is recognized by serum antibodies from a donor with hybrid immunity, collected prior to the emergence of the XBB.1.5 variant. T cell assays reveal high frequencies of XBB.1.5 spike-specific CD4+ and CD8+ T cells amongst donors with hybrid immunity, with the CD4+ T cells skewed towards a Th1 cell phenotype and having attenuated effector cytokine secretion as compared to ancestral spike protein-specific cells. Thus, while the XBB.1.5 variant has retained efficient human receptor binding and gained antigenic alterations, it remains susceptible to recognition by T cells induced via vaccination and previous infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Linfócitos T CD8-Positivos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos
2.
Curr Opin Cell Biol ; 86: 102291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056141

RESUMO

AAA ATPases are a conserved group of enzymes that couple ATP hydrolysis to diverse activities critical for cellular homeostasis by targeted protein-protein interactions. Some of these interactions are potential therapeutic targets because of their role in cancers which rely on increased AAA ATPase activities for maintenance of genomic stability. Two well-characterized members of this family are p97/VCP and RUVBL ATPases where there is a growing understanding of their structure and function, as well as an emerging landscape of selective inhibitors. Here we highlight recent progress in this field, with particular emphasis on structural advances enabled by cryo-electron microscopy (cryo-EM).


Assuntos
Adenosina Trifosfatases , Neoplasias , Humanos , ATPases Associadas a Diversas Atividades Celulares , Microscopia Crioeletrônica , Adenosina Trifosfatases/metabolismo , Neoplasias/tratamento farmacológico , Trifosfato de Adenosina
3.
Transplantation ; 108(4): e49-e62, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012843

RESUMO

BACKGROUND: Immune-suppressed solid-organ transplant recipients (SOTRs) display impaired humoral responses to COVID-19 vaccination, but T cell responses are incompletely understood. SARS-CoV-2 variants Omicron BA.4/5 (BA.4/5) and XBB.1.5 escape neutralization by antibodies induced by vaccination or infection with earlier strains, but T cell recognition of these lineages in SOTRs is unclear. METHODS: We characterized Spike-specific T cell responses to ancestral SARS-CoV-2 and BA.4/5 peptides in 42 kidney, liver, and lung transplant recipients throughout a 3- or 4-dose ancestral Spike mRNA vaccination schedule. As the XBB.1.5 variant emerged during the study, we tested vaccine-induced T cell responses in 10 additional participants using recombinant XBB.1.5 Spike protein. Using an optimized activation-induced marker assay, we quantified circulating Spike-specific CD4 + and CD8 +  T cells based on antigen-stimulated expression of CD134, CD69, CD25, CD137, and/or CD107a. RESULTS: Vaccination strongly induced SARS-CoV-2-specific T cells, including BA.4/5- and XBB.1.5-reactive T cells, which remained detectable over time and further increased following a fourth dose. However, responses to BA.4/5 (1.34- to 1.67-fold lower) XBB.1.5 (2.0- to 18-fold lower) were significantly reduced in magnitude compared with ancestral strain responses. CD4 + responses correlated with anti-receptor-binding domain antibodies and predicted subsequent antibody responses in seronegative individuals. Lung transplant recipients receiving prednisone and older adults displayed weaker responses. CONCLUSIONS: Ancestral strain vaccination stimulates BA.4/5 and XBB.1.5-cross-reactive T cells in SOTRs, but at lower magnitudes. Antigen-specific T cells can predict future antibody responses. Our data support monitoring both humoral and cellular immunity in SOTRs to track COVID-19 vaccine immunogenicity against emerging variants.


Assuntos
COVID-19 , Transplante de Órgãos , Humanos , Idoso , SARS-CoV-2 , Vacinas contra COVID-19 , Transplantados , COVID-19/prevenção & controle , Transplante de Órgãos/efeitos adversos , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Cell Rep ; 42(1): 111964, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640338

RESUMO

The BA.2 sub-lineage of the Omicron (B.1.1.529) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant rapidly supplanted the original BA.1 sub-lineage in early 2022. Both lineages threatened the efficacy of vaccine-elicited antibodies and acquired increased binding to several mammalian ACE2 receptors. Cryoelectron microscopy (cryo-EM) analysis of the BA.2 spike (S) glycoprotein in complex with mouse ACE2 (mACE2) identifies BA.1- and BA.2-mutated residues Q493R, N501Y, and Y505H as complementing non-conserved residues between human and mouse ACE2, rationalizing the enhanced S protein-mACE2 interaction for Omicron variants. Cryo-EM structures of the BA.2 S-human ACE2 complex and of the extensively mutated BA.2 amino-terminal domain (NTD) reveal a dramatic reorganization of the highly antigenic N1 loop into a ß-strand, providing an explanation for decreased binding of the BA.2 S protein to antibodies isolated from BA.1-convalescent patients. Our analysis reveals structural mechanisms underlying the antigenic drift in the rapidly evolving Omicron variant landscape.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2 , Microscopia Crioeletrônica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
5.
Nat Commun ; 13(1): 4696, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982054

RESUMO

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Epitopos/genética , Humanos , Imunização Passiva , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
6.
iScience ; 25(8): 104798, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35875685

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

7.
Nat Chem Biol ; 18(9): 963-971, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676539

RESUMO

Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-CoV-2. Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) protein, enabling virus-host membrane fusion and infection of the airways. We present here a recombinant production strategy for enzymatically active TMPRSS2 and characterization of its matured proteolytic activity, as well as its 1.95 Å X-ray cocrystal structure with the synthetic protease inhibitor nafamostat. Our study provides a structural basis for the potent but nonspecific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that explain specificity. TMPRSS2 cleaved SARS-CoV-2 S protein at multiple sites, including the canonical S1/S2 cleavage site. We ranked the potency of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.4 nM to 120 µM and determined inhibitor mechanisms of action, providing the groundwork for drug development efforts to selectively inhibit TMPRSS2.


Assuntos
COVID-19 , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
8.
ACS Omega ; 7(4): 3424-3433, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128251

RESUMO

Conserved from yeast to humans and composed of six core subunits (Elp1-Elp6), Elongator is a multiprotein complex that catalyzes the modification of the anticodon loop of transfer RNAs (tRNAs) and in turn regulates messenger RNA decoding efficiency. Previous studies showed that yeast Elongator consists of two subassemblies (yElp1/2/3 and yElp4/5/6) and adopts an asymmetric overall architecture. Yet, much less is known about the structural properties of the orthologous human Elongator. Furthermore, the order in which the different Elongator subunits come together to form the full assembly as well as how they coordinate with one another to catalyze tRNA modification is not fully understood. Here, we purified recombinant human Elongator subunits and subassemblies and examined them by single-particle electron microscopy. We found that the human Elongator complex is assembled from two subcomplexes that share similar overall morphologies as their yeast counterparts. Complementary co-purification and pulldown assays revealed that the scaffolding subunit human ELP1 (hELP1) has stabilizing effects on the human ELP3 catalytic subunit. Furthermore, the peripheral hELP2 subunit appears to enhance the integrity and substrate-binding ability of the dimeric hELP1/2/3. Lastly, we found that hELP4/5/6 is recruited to hELP1/2/3 via hELP3. Collectively, our work generated insights into the assembly process of core human Elongator and the coordination of different subunits within this complex.

9.
Nat Commun ; 13(1): 742, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136050

RESUMO

The Delta and Kappa variants of SARS-CoV-2 co-emerged in India in late 2020, with the Delta variant underlying the resurgence of COVID-19, even in countries with high vaccination rates. In this study, we assess structural and biochemical aspects of viral fitness for these two variants using cryo-electron microscopy (cryo-EM), ACE2-binding and antibody neutralization analyses. Both variants demonstrate escape of antibodies targeting the N-terminal domain, an important immune hotspot for neutralizing epitopes. Compared to wild-type and Kappa lineages, Delta variant spike proteins show modest increase in ACE2 affinity, likely due to enhanced electrostatic complementarity at the RBD-ACE2 interface, which we characterize by cryo-EM. Unexpectedly, Kappa variant spike trimers form a structural head-to-head dimer-of-trimers assembly, which we demonstrate is a result of the E484Q mutation and with unknown biological implications. The combination of increased antibody escape and enhanced ACE2 binding provides an explanation, in part, for the rapid global dominance of the Delta variant.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Microscopia Crioeletrônica , Humanos , Evasão da Resposta Imune , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Eletricidade Estática
10.
bioRxiv ; 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35194603

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

11.
Science ; 375(6582): 760-764, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35050643

RESUMO

The newly reported Omicron variant is poised to replace Delta as the most prevalent SARS-CoV-2 variant across the world. Cryo-EM structural analysis of the Omicron variant spike protein in complex with human ACE2 reveals new salt bridges and hydrogen bonds formed by mutated residues R493, S496 and R498 in the RBD with ACE2. These interactions appear to compensate for other Omicron mutations such as K417N known to reduce ACE2 binding affinity, resulting in similar biochemical ACE2 binding affinities for Delta and Omicron variants. Neutralization assays show that pseudoviruses displaying the Omicron spike protein exhibit increased antibody evasion. The increase in antibody evasion, together with retention of strong interactions at the ACE2 interface, thus represent important molecular features that likely contribute to the rapid spread of the Omicron variant.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Antivirais/imunologia , Evasão da Resposta Imune , Receptores de Coronavírus/química , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Microscopia Crioeletrônica , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Cell Rep ; 37(12): 110156, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34914928

RESUMO

The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Beta (B.1.351) and Gamma (P.1) variants of concern (VoCs) include a key mutation (N501Y) found in the Alpha (B.1.1.7) variant that enhances affinity of the spike protein for its receptor, angiotensin-converting enzyme 2 (ACE2). Additional mutations are found in these variants at residues 417 and 484 that appear to promote antibody evasion. In contrast, the Epsilon variants (B.1.427/429) lack the N501Y mutation yet exhibit antibody evasion. We have engineered spike proteins to express these receptor binding domain (RBD) VoC mutations either in isolation or in different combinations and analyze the effects using biochemical assays and cryoelectron microscopy (cryo-EM) structural analyses. Overall, our findings suggest that the emergence of new SARS-CoV-2 variant spikes can be rationalized as the result of mutations that confer increased ACE2 affinity, increased antibody evasion, or both, providing a framework to dissect the molecular factors that drive VoC evolution.


Assuntos
Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Mutação , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Sci Rep ; 11(1): 12448, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127709

RESUMO

The SARS-CoV-2 spike glycoprotein is a focal point for vaccine immunogen and therapeutic antibody design, and also serves as a critical antigen in the evaluation of immune responses to COVID-19. A common feature amongst enveloped viruses such as SARS-CoV-2 and HIV-1 is the propensity for displaying host-derived glycans on entry spike proteins. Similarly displayed glycosylation motifs can serve as the basis for glyco-epitope mediated cross-reactivity by antibodies, which can have important implications on virus neutralization, antibody-dependent enhancement (ADE) of infection, and the interpretation of antibody titers in serological assays. From a panel of nine anti-HIV-1 gp120 reactive antibodies, we selected two (PGT126 and PGT128) that displayed high levels of cross-reactivity with the SARS-CoV-2 spike. We report that these antibodies are incapable of neutralizing pseudoviruses expressing SARS-CoV-2 spike proteins and are unlikely to mediate ADE via FcγRII receptor engagement. Nevertheless, ELISA and other immunoreactivity experiments demonstrate these antibodies are capable of binding the SARS-CoV-2 spike in a glycan-dependent manner. These results contribute to the growing literature surrounding SARS-CoV-2 S cross-reactivity, as we demonstrate the ability for cross-reactive antibodies to interfere in immunoassays.


Assuntos
Anticorpos Anti-HIV/imunologia , Polissacarídeos/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Reações Antígeno-Anticorpo , COVID-19/patologia , COVID-19/virologia , Reações Cruzadas , Epitopos/imunologia , Anticorpos Anti-HIV/farmacologia , Humanos , SARS-CoV-2/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos
14.
PLoS Biol ; 19(4): e3001237, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914735

RESUMO

The recently reported "UK variant" (B.1.1.7) of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. We present a 2.9-Å resolution cryo-electron microscopy (cryo-EM) structure of the complex between the ACE2 receptor and N501Y spike protein ectodomains that shows Y501 inserted into a cavity at the binding interface near Y41 of ACE2. This additional interaction provides a structural explanation for the increased ACE2 affinity of the N501Y mutant, and likely contributes to its increased infectivity. However, this mutation does not result in large structural changes, enabling important neutralization epitopes to be retained in the spike receptor binding domain. We confirmed this through biophysical assays and by determining cryo-EM structures of spike protein ectodomains bound to 2 representative potent neutralizing antibody fragments.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , COVID-19/virologia , Microscopia Crioeletrônica , Epitopos , Humanos , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32941803

RESUMO

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Cadeias Pesadas de Imunoglobulinas/administração & dosagem , Região Variável de Imunoglobulina/administração & dosagem , Biblioteca de Peptídeos , Pneumonia Viral/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Afinidade de Anticorpos , COVID-19 , Cricetinae , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/ultraestrutura , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Pandemias , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...