Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 9(11): 2282-2298, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788674

RESUMO

The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/farmacologia , Mamíferos , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
2.
Beilstein J Org Chem ; 19: 1545-1554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822920

RESUMO

Here, we report the first transition-metal-free defluorinative cycloaddition of gem-difluoroalkenes with organic azides in morpholine as a solvent to construct fully decorated morpholine-substituted 1,2,3-triazoles. Mechanistic studies revealed the formation of an addition-elimination intermediate of morpholine and gem-difluoroalkenes prior to the triazolization reaction via two plausible pathways. Attractive elements include the regioselective and straightforward direct synthesis of fully substituted 1,2,3-triazoles, which are otherwise difficult to access, from readily available starting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...