Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(44): 41780-41790, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609566

RESUMO

The ability to precisely control the localization of enzymes on a surface is critical for several applications including biosensing, bionanoreactors, and single molecule studies. Despite recent advances, fabrication of enzyme patterns with resolution at the single enzyme level is limited by the lack of lithography methods that combine high resolution, compatibility with soft, polymeric structures, ease of fabrication, and high throughput. Here, a method to generate enzyme nanopatterns (using thermolysin as a model system) on a polymer surface is demonstrated using thermochemical scanning probe lithography (tc-SPL). Electrostatic immobilization of negatively charged sulfonated enzymes occurs selectively at positively charged amine nanopatterns produced by thermal deprotection of amines along the side-chain of a methacrylate-based copolymer film via tc-SPL. This process occurs simultaneously with local thermal quasi-3D topographical patterning of the same polymer, offering lateral sub-10 nm resolution, and vertical 1 nm resolution, as well as high throughput (5.2 × 104 µm2/h). The obtained single-enzyme resolution patterns are characterized by atomic force microscopy (AFM) and fluorescence microscopy. The enzyme density, the surface passivation, and the quasi-3D arbitrary geometry of these patterned pockets are directly controlled during the tc-SPL process in a single step without the need of markers or masks. Other unique features of this patterning approach include the combined single-enzyme resolution over mm2 areas and the possibility of fabricating enzymes nanogradients.


Assuntos
Nanotecnologia/métodos , Termolisina/química , Aminas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Metacrilatos/química , Microscopia de Força Atômica , Nanoestruturas/química , Polímeros/química , Propriedades de Superfície , Termolisina/metabolismo
2.
Faraday Discuss ; 219(0): 33-43, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31367716

RESUMO

High-throughput and large-scale patterning of enzymes with sub-10 nm resolution, the size range of individual protein molecules, is crucial for propelling advancement in a variety of areas, from the development of chip-based biomolecular nano-devices to molecular-level studies of cell biology. Despite recent developments in bio-nanofabrication technology, combining 10 nm resolution with high-throughput and large-scale patterning of enzymes is still an open challenge. Here, we demonstrate a high resolution and high-throughput patterning method to generate enzyme nanopatterns with sub-10 nm resolution by using thermochemical scanning probe lithography (tc-SPL). First, tc-SPL is used to generate amine patterns on a methacrylate copolymer film. Thermolysin enzymes functionalized with sulfonate-containing fluorescent labels (Alexa-488) are then directly immobilized onto the amine patterns through electrostatic interaction. Enzyme patterns with sub-10 nm line width are obtained as evidenced by atomic force microscopy (AFM) and fluorescence microscopy. Moreover, we demonstrate large-scale and high throughput (0.13 × 0.1 mm2 at a throughput of 5.2 × 104 µm2 h-1) patterning of enzymes incorporating 10 nm detailed pattern features. This straightforward and high-throughput method of fabricating enzyme nanopatterns will have a significant impact on future bio-nanotechnology applications and molecular-level biological studies. By scaling up using parallel probes, tc-SPL is promising for implementation to scale up the fabrication of nano-biodevices.


Assuntos
Bacillus/enzimologia , Bioimpressão/métodos , Enzimas Imobilizadas/química , Termolisina/química , Aminação , Bacillus/química , Corantes Fluorescentes/química , Metacrilatos/química , Nanotecnologia/métodos , Eletricidade Estática
3.
J Am Chem Soc ; 139(35): 12240-12250, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28832143

RESUMO

This contribution introduces main-chain supramolecular ABC and ABB'A block copolymers sustained by orthogonal metal coordination and hydrogen bonding between telechelic polymers that feature distinct secondary structure motifs. Controlled polymerization techniques in combination with supramolecular assembly are used to engineer heterotelechelic π-sheets that undergo high-fidelity association with both helical and coil-forming synthetic polymers. Our design features multiple advances to achieve our targeted structures, in particular, those emulating sheet-like structural aspects using poly(p-phenylenevinylene)s (PPVs). To engineer heterotelechelic PPVs in a sheet-like design, we engineer an iterative one-pot cross metathesis-ring-opening metathesis polymerization (CM-ROMP) strategy that affords functionalized Grubbs-II initiators that subsequently polymerize a paracyclophanediene. Supramolecular assembly of two heterotelechelic PPVs is used to realize a parallel π-sheet, wherein further orthogonal assembly with helical motifs is possible. We also construct an antiparallel π-sheet, wherein terminal PPV blocks are adjacent to a flexible coil-like poly(norbornene) (PNB). The PNB is designed, through supramolecular chain collapse, to expose benzene and perfluorobenzene motifs that promote a hairpin turn via charge-transfer-aided folding. We demonstrate that targeted helix-(π-sheet)-helix and helix-(π-sheet)-coil assemblies occur without compromising intrinsic helicity, while both parallel and antiparallel ß-sheet-like structures are realized. Our main-chain orthogonal assembly approach allows the engineering of multiblock copolymer scaffolds featuring diverse secondary structures via the directional assembly of telechelic building blocks. The targeted assemblies, a mix of sequence-defined helix-sheet-coil and helix-sheet-helix architectures, are Nature-inspired synthetic mimics that expose α/ß and α+ß protein classes via de novo design and cooperative assembly strategies.


Assuntos
Polímeros/química , Ciclização , Ligação de Hidrogênio , Metais/química , Estrutura Molecular , Polimerização , Análise Espectral/métodos
4.
Angew Chem Int Ed Engl ; 55(51): 15873-15878, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27860190

RESUMO

We report supramolecular AB diblock copolymers comprised of well-defined telechelic building blocks. Helical motifs, formed via reversible addition-fragmentation chain-transfer (RAFT) or anionic polymerization, are assembled with coil-forming and sheet-featuring blocks obtained via atom-transfer radical polymerization (ATRP) or ring-opening metathesis polymerization (ROMP). Interpolymer hydrogen bonding or metal-coordination achieves dynamic diblock architectures featuring hybrid topologies of coils, helices, and/or π-stacked sheets that, on a basic level, mimic protein structural motifs in fully synthetic systems. The intrinsic properties of each block (e.g., circular dichroism and fluorescence) remain unaffected in the wake of self-assembly. This strategy to develop complex synthetic polymer scaffolds from functional building blocks is significant in a field striving to produce architectures reminiscent of biosynthesis, yet fully synthetic in nature. This is the first plug-and-play approach to fabricate hybrid π-sheet/helix, π-sheet/coil, and helix/coil architectures via directional self-assembly.

5.
Phytochemistry ; 72(7): 662-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21338993

RESUMO

An acylphloroglucinol, elliptophenone A, and two xanthones, elliptoxanthone A and elliptoxanthone B, were isolated from the aerial portions of Hypericum ellipticum together with three known xanthones, 1,3,7-trihydroxy-8-(3-methyl-2-butenyl)-9H-xanthen-9-one, 1,6-dihydroxy-4-methoxy-9H-xanthen-9-one, and 1,4,5-trihydroxy-9H-xanthen-9-one. Their structures were determined by spectroscopic analyses. The acylphloroglucinol and xanthones were evaluated for cytotoxicity using three human colon cancer cell lines cell lines (HT-29, HCT-116 and Caco-2) and a normal human colon cell line (CCD-18Co).


Assuntos
Hypericum/química , Floroglucinol/análogos & derivados , Xantonas/química , Xantonas/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Floroglucinol/química , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Xantonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...