Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(22): 12581-12612, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33250996

RESUMO

The rapid shift to online teaching in spring 2020 meant most of us were teaching in panic mode. As we move forward with course planning for fall and beyond, we can invest more time and energy into improving the online experience for our students. We advocate that instructors use inclusive teaching practices, specifically through active learning, in their online classes. Incorporating pedagogical practices that work to maximize active and inclusive teaching concepts will be beneficial for all students, and especially those from minoritized or underserved groups. Like many STEM fields, Ecology and Evolution shows achievement gaps and faces a leaky pipeline issue for students from groups traditionally underserved in science. Making online classes both active and inclusive will aid student learning and will also help students feel more connected to their learning, their peers, and their campus. This approach will likely help with performance, retention, and persistence of students. In this paper, we offer broadly applicable strategies and techniques that weave together active and inclusive teaching practices. We challenge instructors to commit to making small changes as a first step to more inclusive teaching in ecology and evolutionary biology courses.

2.
Mol Biol Cell ; 30(16): 1938-1960, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31188739

RESUMO

During morphogenesis, cells must change shape and move without disrupting tissue integrity. This requires cell-cell junctions to allow dynamic remodeling while resisting forces generated by the actomyosin cytoskeleton. Multiple proteins play roles in junctional-cytoskeletal linkage, but the mechanisms by which they act remain unclear. Drosophila Canoe maintains adherens junction-cytoskeletal linkage during gastrulation. Canoe's mammalian homologue Afadin plays similar roles in cultured cells, working in parallel with ZO-1 proteins, particularly at multicellular junctions. We take these insights back to the fly embryo, exploring how cells maintain epithelial integrity when challenged by adherens junction remodeling during germband extension and dorsal closure. We found that Canoe helps cells maintain junctional-cytoskeletal linkage when challenged by the junctional remodeling inherent in mitosis, cell intercalation, and neuroblast invagination or by forces generated by the actomyosin cable at the leading edge. However, even in the absence of Canoe, many cells retain epithelial integrity. This is explained by a parallel role played by the ZO-1 homologue Polychaetoid. In embryos lacking both Canoe and Polychaetoid, cell junctions fail early, with multicellular junctions especially sensitive, leading to widespread loss of epithelial integrity. Our data suggest that Canoe and Polychaetoid stabilize Bazooka/Par3 at cell-cell junctions, helping maintain balanced apical contractility and tissue integrity.


Assuntos
Junções Aderentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Forma Celular , Citoesqueleto/metabolismo , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Epiderme/metabolismo , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese , Mutação/genética , Fenótipo , Pseudópodes/metabolismo
4.
Mech Dev ; 148: 56-68, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28610887

RESUMO

Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.


Assuntos
Movimento Celular/genética , Ecdisona/genética , Morfogênese/genética , Transcrição Gênica , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ovário/crescimento & desenvolvimento
5.
Methods Mol Biol ; 1328: 73-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26324430

RESUMO

Drosophila oogenesis provides many examples of essential processes in development. A myriad of genetic tools combined with recent advances in culturing egg chambers ex vivo has revealed several surprising mechanisms that govern how this tissue develops, and which could not have been determined in fixed tissues. Here we describe a straightforward protocol for dissecting ovaries, culturing egg chambers, and observing egg development in real time by fluorescent microscopy. This technique is suitable for observation of early- or late-stage egg development, and can be adapted to study a variety of cellular, molecular, or developmental processes. Ongoing analysis of oogenesis in living egg chambers has tremendous potential for discovery of new developmental mechanisms.


Assuntos
Biologia Molecular/métodos , Oogênese/genética , Técnicas de Cultura de Órgãos/métodos , Óvulo/crescimento & desenvolvimento , Animais , Drosophila melanogaster/genética , Feminino , Microscopia de Fluorescência
6.
Nat Commun ; 6: 7356, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082073

RESUMO

Extracellular signalling molecules control many biological processes, but the influence of tissue architecture on the local concentrations of these factors is unclear. Here we examine this issue in the Drosophila egg chamber, where two anterior cells secrete Unpaired (Upd) to activate Signal transducer and activator of transcription (STAT) signalling in the epithelium. High STAT signalling promotes cell motility. Genetic analysis shows that all cells near the Upd source can respond. However, using upright imaging, we show surprising asymmetries in STAT activation patterns, suggesting that some cells experience different Upd levels than predicted by their location. We develop a three-dimensional mathematical model to characterize the spatio-temporal distribution of the activator. Simulations show that irregular tissue domains can produce asymmetric distributions of Upd, consistent with results in vivo. Mutant analysis substantiates this idea. We conclude that cellular landscape can heavily influence the effect of diffusible activators and should be more widely considered.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/genética , Feminino , Masculino , Modelos Biológicos , Óvulo/crescimento & desenvolvimento , Receptores Notch/metabolismo
7.
PLoS One ; 10(4): e0122799, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875645

RESUMO

Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.


Assuntos
Movimento Celular/fisiologia , Drosophila melanogaster/citologia , Modelos Biológicos , Modelos Estatísticos , Oócitos/citologia , Oogênese/fisiologia , Animais , Adesão Celular , Linhagem da Célula/fisiologia , Polaridade Celular , Simulação por Computador , Drosophila melanogaster/crescimento & desenvolvimento , Oócitos/fisiologia , Processos Estocásticos
8.
J Vis Exp ; (97)2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25867882

RESUMO

Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.


Assuntos
Drosophila melanogaster/anatomia & histologia , Animais , Feminino , Microscopia/métodos , Oogênese , Folículo Ovariano/citologia , Óvulo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...