Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 277(34): 30942-9, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12042321

RESUMO

Plasmodium falciparum infection kills more than 1 million children annually. Novel drug targets are urgently being sought as multidrug resistance limits the range of treatment options for this protozoan pathogen. PfHT1, the major hexose transporter of P. falciparum is a promising new target. We report detailed structure-function studies on PfHT1 using site-directed mutagenesis approaches on residues located in helix V (Q169N) and helix VII ((302)SGL --> AGT). Studies with hexose analogues in these mutants have established that hexose recognition and permeation are intimately linked to these helices. A "fructose filter" effect results from the Q169N mutation (abolishing fructose uptake but preserving affinity and transport of glucose, as reported in Woodrow, C. J., Burchmore, R. J. S., and Krishna, S. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9931-9936). Associated changes in competition for glucose uptake by C-2, C-3, and C-6 glucose analogues compared with native PfHT1 indicate subtle alterations in substrate interaction in this mutant. The K(m) values for glucose uptake in helix VII mutants are also similar to native PfHT1. Hydrogen bonding to positions C-5 and C-6 in glucose analogues becomes relatively more important in these mutants compared with native PfHT1. To increase understanding of hexose permeation pathways in PfHT1, we have developed the first three-dimensional model for PfHT1. As predicted for GLUT1, the principal mammalian glucose transporter, PfHT1 contains a main and an auxiliary channel. After modeling, the Q169N mutation leads predominantly to local structural changes, including displacement of neighboring helix IV. The (302)SGL position in helix VII lies in the same plane as Gln-169 in helix V but is also adjacent to the main hexose permeation pathway, consistent with results from experiments mutating this triplet motif. Furthermore, there are obvious structural and functional differences between GLUT1 and PfHT1 that can now be explored in detail using the approaches presented here. The development of specific inhibitors for PfHT1 will also be aided by these insights.


Assuntos
Proteínas de Transporte de Monossacarídeos/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Feminino , Modelos Estruturais , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Relação Estrutura-Atividade , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...