Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(6): 573, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083515

RESUMO

Epigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.


Assuntos
Autorrenovação Celular/genética , Sobrevivência Celular/genética , Epigenômica/métodos , Histona Desmetilases/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Apoptose , Humanos , Camundongos
2.
PLoS Genet ; 11(12): e1005687, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26658668

RESUMO

Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I) RNA editing by the adenine deaminase acting on RNA (ADAR) enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.


Assuntos
Adenosina Desaminase/genética , Aminoidrolases/genética , Imunidade Inata/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Adenosina/genética , Humanos , Inosina/genética , Edição de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética
3.
Biomolecules ; 5(4): 2338-62, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437436

RESUMO

The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.


Assuntos
Adenosina Desaminase/metabolismo , Animais , Humanos , Mamíferos , Edição de RNA/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Cell Rep ; 9(4): 1482-94, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456137

RESUMO

The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform.


Assuntos
Adenosina Desaminase/metabolismo , Imunidade Inata , Edição de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Cruzamentos Genéticos , Citocinas/metabolismo , Perda do Embrião/patologia , Embrião de Mamíferos/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Inosina/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Fenótipo , Proteínas de Ligação a RNA/genética , Receptores de Interferon/metabolismo , Análise de Sobrevida , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Uracila/metabolismo
5.
Nat Genet ; 44(11): 1243-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001123

RESUMO

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Interferon Tipo I , Malformações do Sistema Nervoso/genética , RNA de Cadeia Dupla/metabolismo , Elementos Alu/genética , Animais , Exoma , Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Mutação , Conformação Proteica , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...