Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387848

RESUMO

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Titânio , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Biofilmes , Nanopartículas Metálicas/química
2.
Chemosphere ; 308(Pt 1): 136270, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057355

RESUMO

Recent years, metal pollution is an alarming factor to know about protects the environmental ecosystem due to the toxic, persistent and abundant in nature. Metals are present everywhere in the biotic and abiotic samples including soil, water, and microbes. The rate of bioaccumulation and biotransformation are very high. The excess concentration of the metals causes heavy metal pollution or contamination. Due to these defects, the removal of metals using biological sources is heightened in the current research. In this current investigation, the biosorption potential ability of the metal tolerable Bacillus cereus on Pb and Cu rich environment was chosen and thoroughly monitored. The 16s rRNA of the Bacillus cereus was sequenced, and named as Bacillus cereus RMN 1 (MK521259). The various test concentration (10-60 mg/mL) of Pb and Cu was exhibited the maximum removal percentages of 85.2% and 60.2%. The result of bisorption factors exhibited, 300 mg/mL of the biosorbent potency, 60 min contact time and pH 7, and they found to be optimal to remove the maximum of Pb ion from the solution. In the regression coefficients, the Freundlich and Langmuir isotherm models were used to study the adsorption kinetics of metal ions. In addition, the isotherm model confirmed that the of B. cereus biomass medicated metal adsorption was more favourable reaction for metal degradation. With the above evidences, the results of the present investigation proved that B. cereus derived biomass was actively adsorbing the metals ions. Thus we are recommending for the implementation of effective waste water treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Bacillus cereus/genética , Biomassa , Ecossistema , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo , Metais Pesados/análise , RNA Ribossômico 16S , Solo , Poluentes Químicos da Água/toxicidade
3.
Saudi J Biol Sci ; 28(11): 6057-6062, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34759735

RESUMO

Based on the excellent nutrient level, the current study was focused on isolation and anti-bacterial activity of the actinomycetes from marine mangrove soil samples. As result, 10 different strains of actinomycetes strains were identified on actinomycetes isolation agar plates. The identified strains were shown with white, clear, uncontaminated well matured spore producing ability. Based on the initial observation, the isolated colonies were actinomycetes. The partially extracted crude compound shown excellent anti-bacterial activity against P. aeruginosa and K. pneumoniae with 15 mm and 13 mm zone of inhibitions were observed at 500 µL concentrations. The minimum inhibition concentration result was also confirmed the 500 µL concentration against both the tested concentration with high inhibition rate. Then, the intracellular damages, decreased cell growth of the crude actinomycetes extract treated bacterial strains were clearly observed by confocal laser scanning electron microscope. The extracellular damages of bacterial cell wall and shape of the both the pathogens were clearly shown by scanning electron microscope. Therefore, all the results were clearly supported to the partially extracted crude compound and it has excellent anti-bacterial activity against tested multi drug resistant bacteria.

4.
J Infect Public Health ; 14(12): 1911-1916, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34785167

RESUMO

BACKGROUND: Recent years, the treatment of multi-drug resistant bacteria and their effect are very difficult due to the virulence factors modification. Based on the world wide thread, we have tried to identify the ESBLs producing bacteria from urinary tract infection patients. In result, the highly antibiotic resistant effect of Pseudomonas aeruginosa and Klebsiella pneumoniae were identified. METHODS: Initially, Hexa disc diffusion method was performed to detect the multi-drug resistant bacteria using respective antibiotics of HX066, HX033 and HX077, HX012 discs. Consecutively, the ESBL producing ability of confirmed multi drug resistant bacteria was performed to detect their ESBL producing ability using specific extended spectrum beta lactamase (ESBLs) detection discs of Hexa G-minus 24. Furthermore, the ESBL producing ability of the bacteria was confirmed by ESBLs detection Ezy MIC™ E-test stripe method. RESULTS AND CONCLUSIONS: In result, 10, 5 and 4 mm and 10, 14 and 8 mm zone of inhibition against imipenem (IPM), Ticarcillin/Clavulanic acid (TCC), Cefoperazone (CPZ) and Ampicillin (AMP), Norfloxacin (NX), Nalidixic acid (NA) antibiotics for P. aeruginosa and 16, 22 and 10, 18 mm zone of inhibition against ceftazidime (CAZ), methicillin (MET), ampicillin amoxyclav (AMC), co-trimoxazole (COT) of the HX077 HX012 for K. pneumoniae were observed. Based on the Clinical & Laboratory Standards Institute (CLSI) guidelines, both the bacteria were more resistant to tested antibiotics and it could be developed more resistant against all the tested antibiotics. In addition, the phenotypic detection of ESBL production effect was also performed against both the selected uropathogens, and the results were shown ≥22 mm, ≥27 zone of inhibition against all the tested antibiotics. Further, the genetic identification of multi plux PCR result was shown TEM, SHV and CTX-m genes were present in both the selected uropathogens. Finally, our results were correlated each other and concluded that the selected uropathogens were multi drug resistant effect and also ESBLs producer.


Assuntos
Infecções Urinárias , beta-Lactamases , Antibacterianos/farmacologia , Bactérias/genética , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
5.
J Infect Public Health ; 14(12): 1777-1782, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772638

RESUMO

BACKGROUND: Worldwide, multi-drug resistant Klebsiella pneumoniae (K. pneumonia) and their virulence's were contributed more in the multi-drug resistant effect. According to the World Health organization report, it is an emerging thread in developing countries and also comes under first ever critical list. In this context, the current study was concentrated on detection of extended spectrum beta lactamase (ESBL) producing strain and their antimicrobial susceptibility study of K. pneumoniae. MATERIALS AND METHODS: Firstly, the multi-drug resistant effect of the K. pneumoniae was identified from specific CLSI guidelines recommended antibiotics by disc diffusion method. Consecutively, the primary ESBL identification test was performed using ceftazidime and cefotaxime, followed by double disc combination and phenotypic confirmation tests using ceftazidime/clavulanic acid and cefotaxime/clavulanic acid. Finally, the minimum inhibition concentration of some important sensitive antibiotics were performed against selected K. pneumoniae was confirmed by micro broth dilution method. RESULTS AND CONCLUSIONS: The current result was most favorable to selected K. pneumoniae with more multi drug resistant characteristic nature. All the performed antibiotics were almost more sensitive to selected K. pneumoniae. The effective antibiotics of piperacillin was also exhibited more resistant effect against tested bacteria and it cleaved the bacterial enzyme clearly. The present result of primary ESBL identification test result was exhibited with ≤22 mm and ≤27 mm against ceftazidime and cefotaxime were observed respectively. Followed result of double disc combination and phenotypic confirmation experiments results were clearly stated that the selected K. pneumoniae was ESBL producer. The ceftazidime, cefotaxime and ceftazidime/clavulanic acid and cefotaxime/clavulanic acid were exhibited with merged zones and ≥5 mm zones around the combination disc when compared with disc alone were observed. All the ESBL detection test results were clearly indicated that the selected K. pneumoniae strain was ESBL producer.


Assuntos
Klebsiella pneumoniae , Preparações Farmacêuticas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefotaxima/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Piperacilina , beta-Lactamases
6.
J Infect Public Health ; 14(12): 1875-1880, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802975

RESUMO

BACKGROUND: Recent years, multi drug resistant pathogens and their pathogenicity were increased worldwide due to unauthorized consumption of antibiotics. In addition, correlation between multi drug resistant bacteria and biofilm formation is heightened due to the production of more virulence behavior. There is no better identification methods are available for detection of biofilm producing gram negative bacteria. MATERIALS AND METHODS: In this research work, multi drug resistant strains of Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) were identified based on the specific antibiotics and third generation cephalosporin discs by disc diffusion assay. Subsequently, biofilm forming ability of selected pathogens were identified tissue culture plate and tube test. Based on the multi-drug resistant ability and biofilm production, the molecular identification of P. aeruginosa and K. pneumoniae were confirmed by PCR using universal primers. RESULTS AND CONCLUSIONS: No zone of inhibition present around the discs of muller hinton agar plates were confirm, selected P. aeruginosa and K. pneumoniae strains were multi drug resistant pathogens. Performed third generation cephalosporin antibiotics were also highly sensitive to selected pathogens of P. aeruginosa and K. pneumoniae. Further, biofilm forming ability of selected P. aeruginosa and K. pneumoniae was confirmed by tissue culture plate and tube methods. Finally, molecular identification of P. aeruginosa and K. pneumoniae was named as P. aeruginosa and K. pneumoniae. Our result was conclude, selected P. aeruginosa and K. pneumoniae as biofilm producing pathogens and also highly resistant to current antibiotics.


Assuntos
Klebsiella pneumoniae , Infecções Urinárias , Antibacterianos/farmacologia , Biofilmes , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética
7.
Environ Res ; 200: 111708, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280417

RESUMO

The removal of toxic heavy metal ions from contaminated environments is a great challenge and requires an alternative rapid, efficient, economical bioremediation approach. Henceforth, bioflocculant producing endophytic actinobacterial sp. was isolated from heavy metal contaminated marine environments for heavy metal biosorption process. After molecular characterization, the isolated actinomycete starin was Nocardiopsis sp. GRG 3 (KT235642). It was indicated that the maximum flocculating activity of 80.90% with glucose, and yield is 4.52 g L1. The optimum flocculating activity was reached at pH 7 in the presence of CaCl2 ions. Further, the bioflocculent produced Nocardiopsis sp. GRG 3 (KT235642) was characterized by fourier transform infrared analysis spectra (FTIR) and displayed the presence of carboxyl, hydroxyl, amino groups and characteristic of more polysaccharide and protein. The heavy metal sorption by bioflocculant Nocardiopsis sp. GRG 3 (KT235642) was effectively removed 55.90% Cd, 85.90% Cr, 74.7% Pb, and 51.90% Hg. Therefore, this study was proved that the bioflocculant derived from endophytic actinobacteria, Nocardiopsis sp. GRG 3 (KT235642) as a effective alternative method for decreasing the heavy metals towards sustainable environmental management.


Assuntos
Actinobacteria , Metais Pesados , Actinomyces , Biodegradação Ambiental , Floculação , Concentração de Íons de Hidrogênio
8.
Saudi J Biol Sci ; 28(3): 1750-1756, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732058

RESUMO

The multi-drug resistant effect of the Gram negative bacteria K. pneumoniae was identified by disc diffusion method using specific UTI panel discs of Kleb 1 HX077 and Kleb 2 HX090 HEXA. Among the multi-drug resistant bacteria, the carbapenem resistant (CR) effect of the K. pneumoniae was screened by specific carbapenem detection antibiotics of HEXA HX066 and HX0103 HEXA by disc diffusion method. In addition, the effective antibiotics were further performed against K. pneumoniae by minimum inhibition concentration method. Further, the carbapenemase genes of VIM 1 and IMP 1 were detected from the isolated strains by multiplex PCR method. Furthermore, the biofilm forming ability of selected carbapenem resistant K. pneumoniae was initially identified by tissue culture plate method and confirmed by exopolysaccharide arrest ability of congo red agar assay. Finally, our result was proved that the identified K. pneumoniae is carbapenemase producing strain, and its virulence was extended with strong biofilm formation.

9.
Saudi J Biol Sci ; 28(3): 1763-1769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732060

RESUMO

In this study, the phytochemical, phenolic, flavonoid and bioactive compounds were successfully screened from crude extract of Sargassum wightii by LC-MS analysis after NIST interpretation. Bacterial growth inhibition study result was shown with 24 mm zone inhibition at 200 µg/mL concentration against P. aeruginosa. The increased phenolic content was much closed to gallic acid and the range was observed at 250 µg/mL concentration. In addition, flavonoid contents of the algae extract was indicated more significant with rutin at 200 µg/mL. In result, both the phenolic and flavonoid contents of the extract were more correlated with gallic acid and rutin. Further, the total anti-oxidant and DPPH radical scavenging activities were shown increased activity at 200 µg/mL concentrations. Furthermore, the excellent anti-bacterial alteration result was observed at 200 µg/mL concentration by minimum inhibition concentration. Therefore, the result was revealed that the marine algae Sargassum wightii has excellent phytochemical and anti-oxidant activities, and it has improved anti-bacterial activity against P. aeruginosa.

10.
Saudi J Biol Sci ; 27(12): 3421-3427, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304151

RESUMO

The Caulerpa taxifolia is excellent marine green algae, which produced enormous bioactive compounds with more biological activities. Also, it is an excellent source for synthesis of Ag NPs with increased bioactivity against various infections. In our study, the marine algae marine algae Caulerpa taxifolia mediated Ag NPs was synthesized effectively. The synthesized Ag NPs was characterized well using UV-spectrometer and X-ray powder diffraction (XRD) and confirmed as synthesized particle was Ag NPs. The available structure of the Ag NPs was morphologically identified by scanning electron microscope (SEM), and exact minimum size, polydispersive spherical shape of the entire Ag NPs structure was confirmed by Transmission electron microscope (TEM). Further, the anti-cancer efficiency of biosynthesized Ag NPs against A549 lung cancer cells was found at 40 µg/mL concentration by cytotoxicity experiment. In addition, the phase contrast images of the result were supported the Ag NPs, which damaged the A549 morphologically clearly. Finally, florescence microscopic images were effectively proved the anti-cancerous effect against A549 lung cancer cells due to the condensed morphology of increased death cells. All the confirmed in-vitro results were clearly stated that the Caulerpa taxifolia mediated Ag NPs has superior anti-cancer agent against A549 lung cancer cells.

11.
Saudi J Biol Sci ; 27(11): 3018-3024, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100861

RESUMO

The biosynthesized Ag NPs was synthesized by using marine mangrove plant extract Avicennia marina. The synthesized Ag NPs was confirmed by various physiochemical characterization including UV-spectrometer and XRD analysis. In addition, the shape and of the synthesized Ag NPs was morphologically identified by SEM initially and TEM finally. After confirmation, the anti-cancer property of synthesized Ag NPs was confirmed at 50 µg/mL concentration against A549 lung cancer cells by MTT assay. Further, the ability to stimulate the ROS generation and mitochondrial membrane at the IC50 concentration of Ag NPs was confirmed by fluorescence microscopy using DCFH-DA and rhodamine 123 dyes respectively. Finally, the result was concluded that the synthesized Ag NPs has improved anti-cancer activity against A549 cells at lowest concentration.

12.
Saudi J Biol Sci ; 27(10): 2853-2862, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32994746

RESUMO

Recent years Klebsiella pneumoniae (K. pneumoniae) biofilm formation (BF) is emerging thread worldwide. For tackling this problem, we have chosen Hibiscus rosa-. pneumoniae. The HPLC purified essential oils (EOs sinensis (H. rosa-sinensis) (HRS) to inhibit the BF K) of H. rosa-sinensis was performed against BF K. pneumoniae and showed concentration dependent biofilm inhibition. At the MBIC of EOs (90 µg/ml), the biofilm inhibition was showed at 92% against selected BF K. Pneumoniae. The biofilm metabolic assay, exopolysaccharide quantification and hydrophobicity index variation results exhibited with 88%, 92% and 89% reduction at 90 µg/mL was observed respectively. In addition, the morphological modification of MBIC treated K. pneumoniae was clearly viewed by scanning electron microscope (SEM). Overall, all the invitro experiments result were confirmed that the MBIC of H. rosa-sinensis EOs was very effective against BF K. pneumonia.

14.
Int J Biol Macromol ; 164: 4010-4021, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853609

RESUMO

In the present study, the chemical composition of Morinda citrifolia essential oils was determined by gas chromatography-mass spectrometry and was found to contain several anti-cancer compounds including L-scopoletin, nordamnacanthal, ß-morindone, α-copaene, 9-H-pyrido[3,4-b]indole, ß-thujene and terpinolene. The physico-chemical characterization of chitosan, chitosan nanoparticles and Morinda citrifolia essential oils loaded chitosan nanoparticles combination was carried out by Fourier transform infrared spectroscopy, powder X-ray diffraction and dynamic light scattering coupled with zeta potential. The morphological observation obtained by scanning electron microscopy and transmission electron microscopy provided clear indication that the immobile chitosan polymer formed a coating onto the Morinda citrifolia essential oils surface. The cytotoxic effect of Morinda citrifolia essential oils loaded chitosan nanoparticles against A549 cells were investigated, resulting in 54% inhibition at 40 µg/ml-1. Information about in vitro morphological modification, nucleus damages, ROS generation and cell cycle arrest was obtained by fluorescence microscopy and flow cytometer analysis. The toxicity evaluation against human red blood cells suggested that the Morinda citrifolia essential oils loaded chitosan nanoparticles possess minimum cytotoxicity. Altogether, the present study suggests that these Morinda citrifolia essential oils loaded chitosan nanoparticles are valuable biomaterials owing to their ability to fight against A549 cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Quitosana/química , Morinda/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Células A549 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenômenos Químicos , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Difração de Raios X
15.
Bioorg Chem ; 89: 103008, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31151056

RESUMO

The ability of a natural stabilizing and reducing agent on the synthesis of silver nanoparticles (Ag NPs) was explored using a rapid and single-pot biological reduction method using Nocardiopsis sp. GRG1 (KT235640) biomass. The UV-visible spectral analysis of Ag NPs was found to show a maximum absorption peak located at a wavelength position of ∼422 nm for initial conformation. The major peaks in the XRD pattern were found to be in excellent agreement with the standard values of metallic Ag NPs. No other peaks of impurity phases were observed. The morphology of Ag NPs was confirmed through TEM observation, demonstrating that the particle size distribution of Ag NPs entrenched in spherical particles is in a range between 20 and 50 nm. AFM analysis further supported the nanosized morphology of the synthesized Ag NPs and allowed quantifying the Ag NPs surface roughness. The synthesized Ag NPs showed significant antibacterial and antibiofilm activity against biofilm positive methicillin-resistant coagulase negative Staphylococci (MR-CoNS), which were isolated from urinary tract infection as determined by spectroscopic methods in the concentration range of 5-60 µg/ml. The inhibition of biofilm formation with coloring stain was morphologically imaged by confocal laser scanning microscopy (CLSM). Morphological alteration of treated bacteria was observed by SEM analysis. The results clearly indicate that these biologically synthesized Ag NPs could provide a safer alternative to conventional antibiofilm agents against uropathogen of MR-CoNS.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Resistência a Meticilina/efeitos dos fármacos , Meticilina/farmacologia , Prata/farmacologia , Staphylococcus/efeitos dos fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Meticilina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Prata/química , Prata/metabolismo , Relação Estrutura-Atividade
16.
Microb Pathog ; 126: 138-148, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316902

RESUMO

The present study was designed to identify the potential bioactive compound from endophytic actinomycetes (EA) Nocardiopsis sp. GRG 2 (KT 235641) against selected extended spectrum beta lactamase (ESBL) producing Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae). Initially, the multi drug resistance (MDR) effect of selected uropathogens was confirmed by respective UTI panel of Hexa antibiotics disc methods. The zone of inhibition ≤22 mm for ceftazidime, ≤ 27 mm for cefotaxime and ≤8 mm zone of MIC stripe against both the uropathogens of phenotypic methods confirmed, the selected strains were ESBL producer. Among the various EA extracts, GRG 2 extract showed excellent antibacterial activity against both ESBL producing P. aeruginosa and K. pneumonia by agar well diffution method. The molecular identification of selected GRG 2 strain was named as Nocardiopsis sp. GRG 2 (KT235641). The antibacterial metabolites present in the TLC elution was exhibited at 274 nm by UV visible spectrometer. The partial purification of preparative HPLC fraction 3 showed 14, 16 mm against P. aeruginosa and K. pneumoniae, respectively. Based on the antibacterial effect, the FT-IR, GC-MS and LC-MS analysis of fraction 3 was confirmed as 1, 4-diaza-2, 5-dioxo-3-isobutyl bicyclo[4.3.0]nonane (DDIBN). Further, the dose dependent inhibition of DDIBN against both ESBL producing pathogens was observed at 75 µg/mL by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The increased cell death and disrupted cell membrane integrity were observed at MIC of DDIBN by confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM). The results were proved that the DDIBN has potential antibacterial metabolites against ESBL producing pathogens and it can be applied for various other biomedical fields.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nocardia/isolamento & purificação , Nocardia/metabolismo , Genes Bacterianos/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nocardia/classificação , Nocardia/genética , Filogenia , Pseudomonas aeruginosa/efeitos dos fármacos , RNA Ribossômico 16S/genética , Infecções Urinárias/microbiologia
17.
Microb Pathog ; 127: 267-276, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30550842

RESUMO

Copper oxide nanoparticles (CuO NPs) were synthesized biologically using leaf extract of Camilla japonica. The typical UV-visible spectral peak of CuO NPs was observed at a wavelength of ∼290 nm, which confirmed their successful synthesis. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the synthesized CuO NPs were found to possess spherical shape. Energy dispersive X-ray analyzer (EDX) results revealed that the CuO NPs are almost pure with atomic percentages of 50.92 for Cu and 49.08 for O. Fourier transform infrared (FTIR) confirmed the presence of an absorption peak located at a wavenumber position of ∼480 cm-1 typical for highly pure CuO NPs. TEM images displayed that the particles are relatively uniform in size ∼15-25 nm. The P. aeruginosa and K. pneumonia showed complete resistance against Hexa 077 antibiotic discs. The result of ≤22 ceftazidime and ≤27 cefotaxime confirmed that both the uropathogens were ESBL producers. The ≥8 mm of the MIC stripe further confirmed that both the uropathogens were ESBL producers. Furthermore, the antibacterial activity of CuO NPs against selected ESBL producing P. aeruginosa and K. pneumoniae at minimum inhibition concentration (MIC) of 100 µg/mL. The decreased cell viability and damaged membrane construction of both the uropathogens were observed by confocal laser scanning microscope (CLSM) using AO/EB stains at desired MIC dose. The morphological damage of the bacterial cells was demonstrated by SEM analysis. Hence, based on the above in vitro findings, the results suggested that the CuO NPs are efficient antibacterial compounds against ESBL producing bacteria, and that the plant leaf mediated CuO NPs can be considered as novel and promising material to act against various infectious bacteria.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cobre/metabolismo , Cobre/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Pseudomonas aeruginosa/efeitos dos fármacos , Camellia/química , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Klebsiella pneumoniae/enzimologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Pseudomonas aeruginosa/enzimologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Lactamases/metabolismo
18.
Microb Pathog ; 125: 325-335, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243551

RESUMO

The aim of the current study is to identify bioactive compound from marine endophytic actinomycetes (MEA) isolated from Gulf of Mannar region, Southeast coast of India. Among the isolated actinomycetes, strain GRG 4 exhibited excellent ability to inhibit isolated colistin resistant (CR) Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae), which is a emerging threat to the world. The strain was identified as Streptomyces coeruleorubidus GRG 4 (KY457708), based on morphological, biochemical, phenotypic and genotypic characters. The bioactive metabolites present in the methanolic extract were partially purified by TLC and preparative HPLC. The active HPLC fraction 2 showed 15, 20 mm zone of inhibition against both CR P. aeruginosa and K. pneumoniae respectively. Analytical HPLC and FT-IR results of fraction 2 showed with carbonyl group. Both GC-MS and LC-MS results confirmed that the fraction 2 contained chemical constituents of Bis (2-Ethylhexyl) Phthalate (BEP). The compromised structure with loosely integrated and ruptured cell wall of BEP treated CR bacteria were observed by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) at 75 µg/mL of minimum inhibitory concentration (MIC) dose. Further, cytotoxic effect of BEP against A549 human lung cancer cells revealed complete inhibition by cell proliferation and apoptosis was observed at 100 µg/mL in 24 h treatment. In addition, irreversible ROS dependent oxidative damage was clearly observed at the IC50 concentration of BEP. The toxicity of BEP was also studied against Vibrio fischeri (V. fischeri) and found to be highly toxic after 15 and 30 min of treatment. Based on the results it could be concluded that the identified compound BEP is a potent inhibitor for CR bacteria and A549 lung cancer cells.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Streptomyces/química , Células A549 , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Organismos Aquáticos/química , Produtos Biológicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Endófitos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Índia , Concentração Inibidora 50 , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/ultraestrutura , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Streptomyces/isolamento & purificação
19.
Microb Pathog ; 121: 224-231, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29807135

RESUMO

The accelerative outgrowth of extended spectrum ß-lactamases (ESBLs) producing Escherichia coli (E. coli) and Proteus mirabilis (P. mirabilis) was mainly due to incessant relentless influence of antibiotics thereby increasing incidence and death rate which was obvious from the survey of ESBLs producing bacteria related health problem. In the present paper, we synthesized and characterized zinc oxide nanoparticles (ZnO NPs) employing using Camellia japonica leaf extract, bactericidal action of these NPs against extended spectrum ß lactamases (ESBLs) positive E. coli and P. mirabilis clinical strains owing the minimal inhibitory concentration (MIC) percentage 83, 81% at 100 µg/mL concentration and minimum bactericidal concentration (MBC) final inhibiting concentration at 150 µg/mL. Moreover, confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM) results evident for loss of viability, cell shrinkage, disarrangement of cell membrane, and cell wall lysis activity of ZnO NPs against ESBLs positive E. coli BDUMS3 (KY617770) and P. mirabilis BDUMS1 (KY617768) strains. From the results, it was observed that the biologically synthesized ZnO NPs has stronger antibacterial effect against ESBLs producing bacterial strains. Nevertheless, current date there is no reports of antibacterial activity of metal oxide (ZnO) NPs against ESBL producing gram negative bacteria. Consequently, this finding is the first report in this respect and it shows band gap energy and ROS accumulation to damage the cell wall and inhibit the growth of ESBL producing gram negative strains.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Nanopartículas/química , Óxido de Zinco/farmacologia , beta-Lactamases/metabolismo , Camellia/química , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proteus mirabilis/efeitos dos fármacos
20.
Microb Pathog ; 121: 123-130, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29778819

RESUMO

The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential.


Assuntos
Escherichia coli/genética , Genes Bacterianos , Proteus mirabilis/genética , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Ciprofloxacina/farmacologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Proteus mirabilis/efeitos dos fármacos , Infecções Urinárias/diagnóstico , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...