Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(10): 1611-1628, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37578541

RESUMO

KEY MESSAGE: Transgenic sugarcane overexpressing BRK1 showed improved tolerance to drought stress through modulation of actin polymerization and formation of interlocking marginal lobes in epidermal leaf cells, a typical feature associated with BRK1 expression under drought stress. BRICK1 (BRK1) genes promote leaf epidermal cell morphogenesis and division in plants that involves local actin polymerization. Although the changes in actin filament organization during drought have been reported, the role of BRK in stress tolerance remains unknown. In our previous work, the drought-tolerant Erianthus arundinaceus exhibited high levels of the BRK gene expression under drought stress. Therefore, in the present study, the drought-responsive gene, BRK1 from Saccharum spontaneum, was transformed into sugarcane to test if it conferred drought tolerance in the commercial sugarcane cultivar Co 86032. The transgenic lines were subjected to drought stress, and analyzed using physiological parameters for drought stress. The drought-induced BRK1-overexpressing lines of sugarcane exhibited significantly higher transgene expression compared with the wild-type control and also showed improved physiological parameters. In addition, the formation of interlocking marginal lobes in the epidermal leaf cells, a typical feature associated with BRK1 expression, was observed in all transgenic BRK1 lines during drought stress. This is the first report to suggest that BRK1 plays a role in sugarcane acclimation to drought stress and may prove to be a potential candidate in genetic engineering of plants for enhanced biomass production under drought stress conditions.


Assuntos
Resistência à Seca , Saccharum , Saccharum/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Actinas/genética , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética
2.
3 Biotech ; 9(5): 186, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065486

RESUMO

In this study, full-length (1282-1330 bp) α-expansin 1 (EXPA1) gene from three different accessions belonging to Saccharum complex (Saccharum officinarum-SoEXPA1, Erianthus arundinaceus-EaEXPA1, and Saccharum spp. hybrid-ShEXPA1) was isolated using RAGE technique and characterized. The intronic and coding regions of isolated expansin genes ranged between 526-568 and 756-762 bp, respectively. An open reading frame encoding a polypeptide of 252 amino acids was obtained from S. officinarum and commercial sugarcane hybrid, whereas 254 amino acids were obtained in E. arundinaceus, a wild relative of Saccharum. Bioinformatics analysis of deduced protein revealed the presence of specific signature sequences and conserved amino acid residues crucial for the functioning of the protein. The predicted physicochemical characterization showed that the protein is stable in nature with instability index (II) value less than 40 and also clearly shown the dominance of random coil in the protein structure. Phylogenetic analysis revealed high conservation of EXPA1 among Saccharum complex and related crop species, Sorghum bicolor and Zea mays. The docking study of EXPA1 protein showed the interaction with xylose, which is present in xyloglucan of plant cell wall, elucidated the role of the expansin proteins in plant cell wall modification. This was further supported by the subcellular localization experiment in which it is clearly seen that the expansin protein localizes in the cell wall. Relative expression analysis of EXPA1 gene in Saccharum complex during drought stress showed high expression of the EaEXPA1 in comparison with SoEXPA1 and ShEXPA1 indicating possible role of EaEXPA1 in increased water-deficit stress tolerance in E. arundinaceus. These results suggest the potential use of EXPA1 for increasing the water-deficient stress tolerance levels in crop plants.

3.
Funct Plant Biol ; 46(6): 524-532, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940337

RESUMO

The G protein-coupled receptor is one of the major transmembrane proteins in plants. It consists of an α subunit, a ß subunit and three γ subunits. Chilling tolerant divergence 1 (COLD1) includes a Golgi pH receptor (GPHR) domain, which maintains cell membrane organisation and dynamics, along with abscisic acid linked G protein-coupled receptor (ABA_GPCR) that regulates the signalling pathways during cold stress. In the present study, we performed characterisation of a homologous COLD1 from the economically important monocot species Oryza sativa L., Zea mays L., Sorghum bicolor (L.)Moench and Erianthus arundinaceus (L.) Beauv. IK 76-81, a wild relative of Saccharum. COLD1 was isolated from E. arundinaceus IK 76-81, analysed for its evolution, domain, membrane topology, followed by prediction of secondary, tertiary structures and functionally validated in all four different monocots. Gene expression studies of COLD1 revealed differential expression under heat, drought, salinity and cold stresses in selected monocots. This is the first study on regulation of native COLD1 during abiotic stress in monocots, which has opened up new leads for trait improvement strategies in this economically important crop species.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Secas , Proteínas de Plantas , Estresse Fisiológico
4.
Funct Plant Biol ; 46(6): 596, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172736

RESUMO

The G protein-coupled receptor is one of the major transmembrane proteins in plants. It consists of an α subunit, a ß subunit and three γ subunits. Chilling tolerant divergence 1 (COLD1) includes a Golgi pH receptor (GPHR) domain, which maintains cell membrane organisation and dynamics, along with abscisic acid linked G protein-coupled receptor (ABA_GPCR) that regulates the signalling pathways during cold stress. In the present study, we performed characterisation of a homologous COLD1 from the economically important monocot species Oryza sativa L., Zea mays L., Sorghum bicolor (L.)Moench and Erianthus arundinaceus (L.) Beauv. IK 76-81, a wild relative of Saccharum. COLD1 was isolated from E. arundinaceus IK 76-81, analysed for its evolution, domain, membrane topology, followed by prediction of secondary, tertiary structures and functionally validated in all four different monocots. Gene expression studies of COLD1 revealed differential expression under heat, drought, salinity and cold stresses in selected monocots. This is the first study on regulation of native COLD1 during abiotic stress in monocots, which has opened up new leads for trait improvement strategies in this economically important crop species.

5.
J Biotechnol ; 231: 280-294, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27269250

RESUMO

Saccharum spontaneum L., a wild relative of sugarcane, is known for its adaptability to environmental stresses, particularly cold stress. In the present study, an attempt was made for transcriptome profiling of the low temperature (10°C) tolerant S. spontaneum clone IND 00-1037 collected from high altitude regions of Arunachal Pradesh, North Eastern India. The Illumina Nextseq500 platform yielded a total of 47.63 and 48.18 million reads corresponding to 4.7 and 4.8 gigabase pairs (Gb) of processed reads for control and cold stressed (10°C for 24h) samples, respectively. These reads were de novo assembled into 214,611 unigenes with an average length of 801bp. Further, all unigenes were aligned to GO, KEGG and COG databases in order to identify novel genes and pathways responsive upon low temperature conditions. The differential gene expression analysis revealed that about 2583 genes were upregulated and 3302 genes were down regulated during the stress. This is perhaps the comprehensive transcriptome data of a low temperature tolerant clone of S. spontaneum. This study would aid in identifying novel genes and also in future genomic studies pertaining to sugarcane and its wild relatives.


Assuntos
Saccharum/genética , Saccharum/metabolismo , Transcriptoma/genética , Análise por Conglomerados , Temperatura Baixa , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Phys Chem A ; 110(40): 11517-26, 2006 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17020265

RESUMO

Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.


Assuntos
Compostos Aza/química , Citosina/química , Radical Hidroxila/química , Simulação por Computador , Citosina/análogos & derivados , Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Radiólise de Impulso , Análise Espectral , Termodinâmica
7.
Free Radic Biol Med ; 41(8): 1240-6, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17015170

RESUMO

One-electron reduction of S-nitrosothiols (RSNO) has been studied using radiolytically produced reducing entity, the hydrated electron (e(aq)(-)), in aqueous medium. Both kinetics of the reaction and the mechanistic aspects of the decomposition of S-nitroso derivatives of glutathione, L-cysteine, N-acetyl-L-cysteine, N-acetyl-D,L-penicillamine, N-acetylcysteamine, L-cysteine methyl ester, and D,L-penicillamine have been investigated at neutral and acidic pH. The second-order rate constants of the reaction of e(aq)(-) with RSNOs were determined using a pulse radiolysis technique and were found to be diffusion controlled (10(10) dm(3) mol(-1) s(-1)) at neutral pH. The product analysis using HPLC, fluorimetry, and MS revealed the formation of thiol and nitric oxide as the major end products. It is therefore proposed that one-electron reduction of RSNO leads to the liberation of NO. There is no intermediacy of a thiyl radical as in the case of oxidation reactions of RSNOs. The radical anion of RSNO (RSN(*)O(-)) is proposed as a possible intermediate. The overall reaction could be written as RSNO + e(aq)(-) --H+--> RSH + (*)NO.


Assuntos
S-Nitrosotióis/metabolismo , Elétrons , Radicais Livres/química , Radicais Livres/metabolismo , Técnicas In Vitro , Cinética , Óxido Nítrico/metabolismo , Oxirredução , S-Nitrosotióis/química , Água
8.
J Agric Food Chem ; 54(21): 8171-6, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032025

RESUMO

A study is made of the kinetics and mechanism of the reaction of radiolytically produced hydrated electron (e-(aq)) with some triazine derivatives [1,3,5-triazine (T), 2,4,6-trimethoxy-1,3,5-triazine (TMT), 2,4-dioxohexahydro-1,3,5-triazine (DHT), 6-chloro N-ethyl N-(1-methylethyl)-1,3,5-triazine 2,4-diamine (atrazine, AT), and cyanuric acid (CA)] in aqueous medium using pulse and steady-state radiolysis techniques. The second-order rate constants were determined from the pseudo first-order decay of e(-)(aq) in the presence of triazines at 720 nm, and the values obtained with T, TMT, AT, and CA are in the order of 10(9) dm(3) mol(-1) s(-1) and that of DHT was 10(8) dm(3) mol(-1) s(-1) at pH 6. The transient absorption spectra from the reaction of e(-)(aq) with T and TMT are characterized by their lambda(max) at 310 nm, and those of DHT and CA are around 280 and 290 nm, respectively. However, a very weak and featureless absorption spectrum is obtained from AT. On the basis of the spectral evidence and on the quantitative electron transfer from the transient intermediates to the oxidant, methyl viologen (MV(2+)), the intermediate radicals are assigned to N-protonated electron adducts (with the unpaired spin density at carbon) of triazines. The degradation profiles, monitored as the disappearance of parent triazine concentrations as a function of dose, obtained with AT, TMT, CA, and DHT, highlight the potential use of e-(aq) in the degradation of triazines.


Assuntos
Elétrons , Herbicidas/química , Triazinas/química , Água/química , Cinética , Radiólise de Impulso , Análise Espectral
9.
J Agric Food Chem ; 48(8): 3704-9, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10956174

RESUMO

Pulse and steady state radiolysis techniques have been used to determine the bimolecular rate constants and to investigate the spectral nature of the intermediates and the degradation induced by hydroxyl radicals ((*)OH) with 1,3,5-triazine (T), 2,4, 6-trimethoxy-1,3,5-triazine (TMT), and 2,4-dioxohexahydro-1,3, 5-triazine (DHT) in aqueous medium. A competitive kinetic method with KSCN as the (*)OH scavenger was used to determine the rate constants for the reaction of (*)OH with T, TMT, and DHT. The bimolecular rate constants are 3.4 x 10(9), 2.06 x 10(8), and 1.61 x 10(9) dm(3) mol(-)(1) s(-)(1) respectively, for T, TMT, and DHT at pH approximately 6. The transient absorption spectra obtained from the reaction of (*)OH with T, TMT, and DHT have single absorption maxima at 320, 300, and 300 nm, respectively, and were found to undergo a second-order decay. The formation of TOH(*) [C(6)OH-N(5)-yl radical], TMTOH(*) [N(5)OH-C(6)-yl radical], and DHT(*) [C(6)-yl radical] is proposed from the initial attack of (*)OH with T, TMT, and DHT, respectively. A complete degradation of TMT (10(-3) mol dm(-3)) was obtained after absorbed doses of 5 kGy in N(2)O-saturated solutions and 16 kGy in aerated solutions. A similar degradation pattern was obtained with DHT in N(2)O-saturated solutions. Complete degradation was observed with an absorbed dose of 7 kGy. On the basis of the results from both pulse and steady state radiolysis, a possible reaction mechanism involving (*)OH-mediated oxidative degradation is proposed. A complete photodecomposition of DHT was also observed in the presence of ferric perchlorate using ultraviolet light at low pH. Photoinduced electron transfer between Fe(III) and DHT in the Fe(III)-DHT complex and subsequent formation of DHT(*) are proposed to be the major processes that lead to the complete degradation of DHT at pH 3.


Assuntos
Triazinas/química , Raios gama , Cinética , Oxirredução , Fotoquímica , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...