Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139745

RESUMO

Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there is a need for a cost-effective, lightweight, small-dimensional, and non-invasive device whose presence does not interfere with the observed signals. This paper reports on the fabrication of a highly sensitive human respiratory sensor based on silicon nanowires (SiNWs) fabricated by a top-down method of metal-assisted chemical-etching (MACE). Besides other important factors, reducing the final cost of the sensor is of paramount importance. One of the factors that increases the final price of the sensors is using gold (Au) electrodes. Herein, we investigate the sensor's response using aluminum (Al) electrodes as a cost-effective alternative, considering the fact that the electrode's work function is crucial in electronic device design, impacting device electronic properties and electron transport efficiency at the electrode-semiconductor interface. Therefore a comparison is made between SiNWs breath sensors made from both p-type and n-type silicon to investigate the effect of the dopant and electrode type on the SiNWs respiratory sensing functionality. A distinct directional variation was observed in the sample's response with Au and Al electrodes. Finally, performing a qualitative study revealed that the electrical resistance across the SiNWs renders greater sensitivity to breath than to dry air pressure. No definitive research demonstrating the mechanism behind these effects exists, thus prompting our study to investigate the underlying process.


Assuntos
Nanofios , Silício , Humanos , Ouro , Semicondutores , Alumínio
2.
Nanotechnology ; 34(34)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201511

RESUMO

Flux-periodic oscillations of the superconducting gap in proximitized core-shell nanowires are explored. Periodicity of oscillations in the energy spectrum of a cylindrical nanowire is compared with nanowires having hexagonal and square cross-section geometry, along with the effects of Zeeman and Rashba spin-orbit interaction. A transition betweenh/eandh/2eperiodicity is found and shown to be dependent on the chemical potential, with correspondence to degeneracy points of the angular momentum quantum number. For a thin shell of a square nanowire, solelyh/eperiodicity is found in the infinite wire spectrum and shown to result from energy separation between the lowest groups of excited states.

3.
Nanotechnology ; 34(33)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100052

RESUMO

We calculate the charge and heat currents carried by electrons, originating from a temperature gradient and a chemical potential difference between the two ends of tubular nanowires with different geometries of the cross-sectional areas: circular, square, triangular, and hexagonal. We consider nanowires based on InAs semiconductor material, and use the Landauer-Büttiker approach to calculate the transport quantities. We include impurities in the form of delta scatterers and compare their effect for different geometries. The results depend on the quantum localization of the electrons along the edges of the tubular prismatic shell. For example, the effect of impurities on the charge and heat transport is weaker in the triangular shell than in the hexagonal shell, and the thermoelectric current in the triangular case is several times larger than in the hexagonal case, for the same temperature gradient.

4.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080796

RESUMO

Silicon nanowires (SiNWs) are known to exhibit a large piezoresistance (PZR) effect, making them suitable for various sensing applications. Here, we report the results of a PZR investigation on randomly distributed and interconnected vertical silicon nanowire arrays as a pressure sensor. The samples were produced from p-type (100) Si wafers using a silver catalyzed top-down etching process. The piezoresistance response of these SiNW arrays was analyzed by measuring their I-V characteristics under applied uniaxial as well as isostatic pressure. The interconnected SiNWs exhibit increased mechanical stability in comparison with separated or periodic nanowires. The repeatability of the fabrication process and statistical distribution of measurements were also tested on several samples from different batches. A sensing resolution down to roughly 1m pressure was observed with uniaxial force application, and more than two orders of magnitude resistance variation were determined for isostatic pressure below atmospheric pressure.

5.
Nanotechnology ; 31(42): 424006, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32585640

RESUMO

We calculate the charge and heat current associate with electrons, generated by a temperature gradient and chemical potential difference between two ends of a tubular nanowire of 30 nm radius in the presence of an external magnetic field perpendicular to its axis. We consider a nanowire based on a semiconductor material, and use the Landauer-Büttiker approach to calculate the transport quantities. We obtain the variation of the Seebeck coefficient (S), thermal conductivity (κ), and the figure of merit (ZT), with respect to the temperature up to 20 K, and with the magnetic field up to 3 T. In particular we show that the Seebeck coefficient can change sign in this domain of parameters. In addition κ and ZT have oscillations when the magnetic field increases. These oscillations are determined by the energy spectrum of the electrons.

6.
Nanotechnology ; 31(35): 354001, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32408282

RESUMO

The effects of geometry on the hosting of Majorana zero modes are explored in core-shell nanowires with a hexagonal core and a triangular shell, and vice versa. The energy interval separating electronic states localized in the corners from states localized on the sides of the shell is shown to be larger for a triangular nanowire with a hexagonal core, than a triangular one. We build the topological phase diagram for both cases and compare them to earlier work on prismatic nanowires with matching core and shell geometry. We suggest that a dual core nanowire is needed to allow for braiding operations of Majorana zero modes at the nanowire end plane.

7.
Sci Rep ; 10(1): 3252, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094361

RESUMO

Films of SiGe nanocrystals (NCs) in oxide have the advantage of tuning the energy band gap by adjusting SiGe NCs composition and size. In this study, SiGe-SiO2 amorphous films were deposited by magnetron sputtering on Si substrate followed by rapid thermal annealing at 700, 800 and 1000 °C. We investigated films with Si:Ge:SiO2 compositions of 25:25:50 vol.% and 5:45:50 vol.%. TEM investigations reveal the major changes in films morphology (SiGe NCs with different sizes and densities) produced by Si:Ge ratio and annealing temperature. XPS also show that the film depth profile of SiGe content is dependent on the annealing temperature. These changes strongly influence electrical and photoconduction properties. Depending on annealing temperature and Si:Ge ratio, photocurrents can be 103 times higher than dark currents. The photocurrent cutoff wavelength obtained on samples with 25:25 vol% SiGe ratio decreases with annealing temperature increase from 1260 nm in SWIR for 700 °C annealed films to 1210 nm for those at 1000 °C. By increasing Ge content in SiGe (5:45 vol%) the cutoff wavelength significantly shifts to 1345 nm (800 °C annealing). By performing measurements at 100 K, the cutoff wavelength extends in SWIR to 1630 nm having high photoresponsivity of 9.35 AW-1.

9.
Sci Rep ; 9(1): 14703, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604993

RESUMO

Transport properties of a quantum dot coupled to a photon cavity are investigated using a quantum master equation in the steady-state regime. In the off-resonance regime, when the photon energy is smaller than the energy spacing between the lowest electron states of the quantum dot, we calculate the current that is generated by photon replica states as the electronic system is pumped with photons. Tuning the electron-photon coupling strength, the photocurrent can be enhanced by the influences of the photon polarization, and the cavity-photon coupling strength of the environment. We show that the current generated through the photon replicas is very sensitive to the photon polarization, but it is not strongly dependent on the average number of photons in the environment.

10.
Beilstein J Nanotechnol ; 10: 1873-1882, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598453

RESUMO

Multilayer structures comprising of SiO2/SiGe/SiO2 and containing SiGe nanoparticles were obtained by depositing SiO2 layers using reactive direct current magnetron sputtering (dcMS), whereas, Si and Ge were co-sputtered using dcMS and high-power impulse magnetron sputtering (HiPIMS). The as-grown structures subsequently underwent rapid thermal annealing (550-900 °C for 1 min) in N2 ambient atmosphere. The structures were investigated using X-ray diffraction, high-resolution transmission electron microscopy together with spectral photocurrent measurements, to explore structural changes and corresponding properties. It is observed that the employment of HiPIMS facilitates the formation of SiGe nanoparticles (2.1 ± 0.8 nm) in the as-grown structure, and that presence of such nanoparticles acts as a seed for heterogeneous nucleation, which upon annealing results in the periodically arranged columnar self-assembly of SiGe core-shell nanocrystals. An increase in photocurrent intensity by more than an order of magnitude was achieved by annealing. Furthermore, a detailed discussion is provided on strain development within the structures, the consequential interface characteristics and its effect on the photocurrent spectra.

11.
Opt Express ; 27(18): 25502-25514, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510422

RESUMO

Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations. The phenomenology includes Mie resonances and guided modes yielding together rich and complex spectra. We consider nanowires with hexagonal, square and triangular cross sections. The modes that are most sensitive to the incidence angle are the hexapole for the hexagonal case and the quadrupole for the square case. Higher order modes are also sensitive, but mostly for the square geometry. Our results indicate the possibility of a flexible in-situ tunability of the directivity simply by rotating the nanowire profile relatively to the direction of the incident light which could offer potential advantages in applications such as switching or sensing.

12.
Nanotechnology ; 30(45): 454001, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31370045

RESUMO

We discuss the low energy electronic states in hexagonal rings. These states correspond to the transverse modes in core-shell nanowires built of III-V semiconductors which typically have a hexagonal cross section. In the case of symmetric structures the 12 lowest states (including the spin) are localized in the corners, while the next following 12 states are localized mostly on the sides. Depending on the material parameters, in particular the effective mass, the ring diameter and width, the corner and side states may be separated by a considerable energy gap, ranging from few to tens of meV. In a realistic fabrication process geometric asymmetries are unavoidable, and therefore the particles are not symmetrically distributed between all corner and side areas. Possibly, even small deformations may shift the localization of the ground state to one of the sides. The transverse states or the transitions between them may be important in transport or optical experiments. Still, up to date, there are only very few experimental investigations of the localization-dependent properties of core-shell nanowires.

13.
Nanomaterials (Basel) ; 9(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319544

RESUMO

We study the transport properties of a wire-dot system coupled to a cavity and a photon reservoir. The system is considered to be microstructured from a two-dimensional electron gas in a GaAs heterostructure. The 3D photon cavity is active in the far-infrared or the terahertz regime. Tuning the photon energy, Rabi-resonant states emerge and in turn resonant current peaks are observed. We demonstrate the effects of the cavity-photon reservoir coupling, the mean photon number in the reservoir, the electron-photon coupling and the photon polarization on the intraband transitions occurring between the Rabi-resonant states, and on the corresponding resonant current peaks. The Rabi-splitting can be controlled by the photon polarization and the electron-photon coupling strength. In the selected range of the parameters, the electron-photon coupling and the cavity-environment coupling strengths, we observe the results of the Purcell effect enhancing the current peaks through the cavity by increasing the cavity-reservoir coupling, while they decrease with increasing electron-photon coupling. In addition, the resonant current peaks are also sensitive to the mean number of photons in the reservoir.

14.
Nanomaterials (Basel) ; 9(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091757

RESUMO

We theoretically investigate thermoelectric effects in a quantum dot system under the influence of a linearly polarized photon field confined to a 3D cavity. A temperature gradient is applied to the system via two electron reservoirs that are connected to each end of the quantum dot system. The thermoelectric current in the steady state is explored using a quantum master equation. In the presence of the quantized photons, extra channels, the photon replica states, are formed generating a photon-induced thermoelectric current. We observe that the photon replica states contribute to the transport irrespective of the direction of the thermal gradient. In the off-resonance regime, when the energy difference between the lowest states of the quantum dot system is smaller than the photon energy, the thermoelectric current is almost blocked and a plateau is seen in the thermoelectric current for strong electron-photon coupling strength. In the resonant regime, an inversion of thermoelectric current emerges due to the Rabi-splitting. Therefore, the photon field can change both the magnitude and the sign of the thermoelectric current induced by the temperature gradient in the absence of a voltage bias between the leads.

15.
Nano Lett ; 19(5): 3336-3343, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31013103

RESUMO

We report a comprehensive study of the impact of the structural properties in radial GaAs-Al0.3Ga0.7As nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems. Charge carrier dynamics induced by a surface acoustic wave are resolved and prove efficient carrier exchange on native, subnanosecond time scales within the heterostructure. Experimental findings are corroborated by theoretical modeling, which unambiguously show that electrons and holes localize on facets where the quantum well is the thickest and that even minute deviations of the perfect hexagonal shape strongly perturb the commonly assumed 6-fold symmetric ground state.

16.
Beilstein J Nanotechnol ; 10: 606-616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873332

RESUMO

In this work, we theoretically model the time-dependent transport through an asymmetric double quantum dot etched in a two-dimensional wire embedded in a far-infrared (FIR) photon cavity. For the transient and the intermediate time regimes, the current and the average photon number are calculated by solving a Markovian master equation in the dressed-states picture, with the Coulomb interaction also taken into account. We predict that in the presence of a transverse magnetic field the interdot Rabi oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states for opposite spin orientation. The interdot Rabi oscillation induces charge oscillations across the system and a phase difference between the transient source and drain currents. We point out a difference between the steady-state correlation functions in the Coulomb blocking and the photon-assisted transport regimes.

17.
Entropy (Basel) ; 21(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-33267445

RESUMO

We recall theoretical studies on transient transport through interacting mesoscopic systems. It is shown that a generalized master equation (GME) written and solved in terms of many-body states provides the suitable formal framework to capture both the effects of the Coulomb interaction and electron-photon coupling due to a surrounding single-mode cavity. We outline the derivation of this equation within the Nakajima-Zwanzig formalism and point out technical problems related to its numerical implementation for more realistic systems which can neither be described by non-interacting two-level models nor by a steady-state Markov-Lindblad equation. We first solve the GME for a lattice model and discuss the dynamics of many-body states in a two-dimensional nanowire, the dynamical onset of the current-current correlations in electrostatically coupled parallel quantum dots and transient thermoelectric properties. Secondly, we rely on a continuous model to get the Rabi oscillations of the photocurrent through a double-dot etched in a nanowire and embedded in a quantum cavity. A many-body Markovian version of the GME for cavity-coupled systems is also presented.

18.
J Cell Mol Med ; 22(12): 6068-6076, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30324682

RESUMO

Two familial forms of colorectal cancer (CRC), Lynch syndrome (LS) and familial adenomatous polyposis (FAP), are caused by rare mutations in DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS2) and the genes APC and MUTYH, respectively. No information is available on the presence of high-risk CRC mutations in the Romanian population. We performed whole-genome sequencing of 61 Romanian CRC cases with a family history of cancer and/or early onset of disease, focusing the analysis on candidate variants in the LS and FAP genes. The frequencies of all candidate variants were assessed in a cohort of 688 CRC cases and 4567 controls. Immunohistochemical (IHC) staining for MLH1, MSH2, MSH6, and PMS2 was performed on tumour tissue. We identified 11 candidate variants in 11 cases; six variants in MLH1, one in MSH6, one in PMS2, and three in APC. Combining information on the predicted impact of the variants on the proteins, IHC results and previous reports, we found three novel pathogenic variants (MLH1:p.Lys84ThrfsTer4, MLH1:p.Ala586CysfsTer7, PMS2:p.Arg211ThrfsTer38), and two novel variants that are unlikely to be pathogenic. Also, we confirmed three previously published pathogenic LS variants and suggest to reclassify a previously reported variant of uncertain significance to pathogenic (MLH1:c.1559-1G>C).


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Predisposição Genética para Doença , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Adulto , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , DNA Glicosilases/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Fatores de Risco , Romênia/epidemiologia
19.
Science ; 361(6404): 769-773, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30072576

RESUMO

Proteins circulating in the blood are critical for age-related disease processes; however, the serum proteome has remained largely unexplored. To this end, 4137 proteins covering most predicted extracellular proteins were measured in the serum of 5457 Icelanders over 65 years of age. Pairwise correlation between proteins as they varied across individuals revealed 27 different network modules of serum proteins, many of which were associated with cardiovascular and metabolic disease states, as well as overall survival. The protein modules were controlled by cis- and trans-acting genetic variants, which in many cases were also associated with complex disease. This revealed co-regulated groups of circulating proteins that incorporated regulatory control between tissues and demonstrated close relationships to past, current, and future disease states.


Assuntos
Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Doenças Cardiovasculares/genética , Doenças Metabólicas/genética , Proteoma/análise , Proteoma/genética , Proteômica/métodos , Aptâmeros de Nucleotídeos , Predisposição Genética para Doença , Variação Genética , Humanos , Islândia , Redes e Vias Metabólicas
20.
Beilstein J Nanotechnol ; 9: 1512-1526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977684

RESUMO

We consider core-shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and reduces the value of the critical field associated with the topological quantum phase transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...