Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Pharm Res ; 14(2): 373-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901144

RESUMO

The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-ß-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect.

2.
Daru ; 21(1): 58, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866721

RESUMO

BACKGROUND: Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. METHODS: PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. RESULTS: Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, -11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, -5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 µg) was significantly lower than both free docetaxel (20.2 µg) and unconjugated PLGA nanoparticles (6.2 µg). CONCLUSION: In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may represent a promising drug delivery system in cancer therapy.


Assuntos
Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Albumina Sérica/química , Taxoides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Células Hep G2 , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Arch Pharm Res ; 29(12): 1179-86, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17225470

RESUMO

Cross-linked starch microspheres were prepared using different kinds of cross-linking agents. The influence of several parameters on morphology, size, swelling ratio and drug release rate from these microspheres were evaluated. These parameters included cross-linker type, concentration and the duration of cross-linking reaction. Microspheres cross-linked with glutaraldehyde had smooth surface compared with those prepared with epichlorhydrine or formaldehyde. The particle size increased with increasing the cross-linking time and increasing the drug loading. Swelling ratio of the particles was a function of cross-linker type but not the concentration or time of cross-linking. Drug release from starch microspheres was measured in phosphate buffer and also in phosphate buffer containing alpha-amylase. Results showed that microspheres cross-linked with epichlorhydrine released all their drug content in the first 30 minutes. However, cross-linking of the starch microspheres with glutaraldehyde or formaldehyde decreased drug release rate. SEM and drug release studies showed that cross-linked starch microspheres were susceptible to the enzymatic degradation under the influence of alpha-amylase. Changing the enzyme concentration from 5000 to 10,000 IU/L, increased drug release rate but higher concentration of enzyme (20,000 IU/L) caused no more acceleration.


Assuntos
Microesferas , Amido/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Colo/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Diclofenaco/administração & dosagem , Diclofenaco/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Formaldeído , Glutaral/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...