Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 108(4-1): 044307, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978685

RESUMO

We consider an adaptive network of Kuramoto oscillators with purely dyadic coupling, where the adaption is proportional to the degree of the global order parameter. We find only the continuous transition to synchronization via the pitchfork bifurcation, an abrupt synchronization (desynchronization) transition via the pitchfork (saddle-node) bifurcation resulting in the bistable region R_{1}. This is a smooth continuous transition to a weakly synchronized state via the pitchfork bifurcation followed by a subsequent abrupt transition to a strongly synchronized state via a second saddle-node bifurcation along with an abrupt desynchronization transition via the first saddle-node bifurcation resulting in the bistable region R_{2} between the weak and strong synchronization. The transition goes from the bistable region R_{1} to the bistable region R_{2}, and transition from the incoherent state to the bistable region R_{2} as a function of the coupling strength for various ranges of the degree of the global order parameter and the adaptive coupling strength. We also find that the phase-lag parameter enlarges the spread of the weakly synchronized state and the bistable states R_{1} and R_{2} to a large region of the parameter space. We also derive the low-dimensional evolution equations for the global order parameters using the Ott-Antonsen ansatz. Further, we also deduce the pitchfork, first and second saddle-node bifurcation conditions, which is in agreement with the simulation results.

2.
Phys Rev E ; 107(4-1): 044209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198793

RESUMO

We uncover the emergence of distinct sets of multistable chimera states in addition to chimera death and synchronized states in a smallest population of three globally coupled oscillators with mean-field diffusive coupling. Sequence of torus bifurcations result in the manifestation of distinct periodic orbits as a function of the coupling strength, which in turn result in the genesis of distinct chimera states constituted by two synchronized oscillators coexisting with an asynchronous oscillator. Two subsequent Hopf bifurcations result in homogeneous and inhomogeneous steady states resulting in desynchronized steady states and chimera death state among the coupled oscillators. The periodic orbits and the steady states lose their stability via a sequence of saddle-loop and saddle-node bifurcations finally resulting in a stable synchronized state. We have generalized these results to N coupled oscillators and also deduced the variational equations corresponding to the perturbation transverse to the synchronization manifold and corroborated the synchronized state in the two-parameter phase diagrams using its largest eigenvalue. Chimera states in three coupled oscillators emerge as a solitary state in N coupled oscillator ensemble.

3.
Phys Rev E ; 107(3-1): 034212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072986

RESUMO

We consider two populations of the globally coupled Sakaguchi-Kuramoto model with the same intra- and interpopulations coupling strengths. The oscillators constituting the intrapopulation are identical whereas the interpopulations are nonidentical with a frequency mismatch. The asymmetry parameters ensure the permutation symmetry among the oscillators constituting the intrapopulation and a reflection symmetry among the oscillators constituting the interpopulation. We show that the chimera state manifests by spontaneously breaking the reflection symmetry and also exists in almost in the entire explored range of the asymmetry parameter without restricting to the near π/2 values of it. The saddle-node bifurcation mediates the abrupt transition from the symmetry breaking chimera state to the symmetry-preserving synchronized oscillatory state in the reverse trace, whereas the homoclinic bifurcation mediates the transition from the synchronized oscillatory state to synchronized steady state in the forward trace. We deduce the governing equations of motion for the macroscopic order parameters employing the finite-dimensional reduction by Watanabe and Strogatz. The analytical saddle-node and homoclinic bifurcation conditions agree well with the simulations results and the bifurcation curves.

4.
Phys Rev E ; 105(3-1): 034307, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428136

RESUMO

We investigate the phase diagram of the Sakaguchi-Kuramoto model with a higher-order interaction along with the traditional pairwise interaction. We also introduce asymmetry parameters in both the interaction terms and investigate the collective dynamics and their transitions in the phase diagrams under both unimodal and bimodal frequency distributions. We deduce the evolution equations for the macroscopic order parameters and eventually derive pitchfork and Hopf bifurcation curves. Transition from the incoherent state to standing wave pattern is observed in the presence of the unimodal frequency distribution. In contrast, a rich variety of dynamical states such as the incoherent state, partially synchronized state-I, partially synchronized state-II, and standing wave patterns and transitions among them are observed in the phase diagram via various bifurcation scenarios, including saddle-node and homoclinic bifurcations, in the presence of bimodal frequency distribution. Higher-order coupling enhances the spread of the bistable regions in the phase diagrams and also leads to the manifestation of bistability between incoherent and partially synchronized states even with unimodal frequency distribution, which is otherwise not observed with the pairwise coupling. Further, the asymmetry parameters facilitate the onset of several bistable and multistable regions in the phase diagrams. Very large values of the asymmetry parameters allow the phase diagrams to admit only the monostable dynamical states.

5.
Phys Rev E ; 106(6-1): 064204, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671171

RESUMO

A simple limiting factor in the intrinsic variable of the normal diffusive coupling is known to facilitate the phenomenon of reviving of oscillation [Zou et al., Nat. Commun. 6, 7709 (2015)2041-172310.1038/ncomms8709], where the limiting factor destabilizes the stable steady states, thereby resulting in the manifestation of the stable oscillatory states. In contrast, in this work we show that the same limiting factor can indeed facilitate the manifestation of the stable steady states by destabilizing the stable oscillatory state. In particular, the limiting factor in the intrinsic variable facilitates the genesis of a nontrivial amplitude death via a saddle-node infinite-period limit (SNIPER) bifurcation and symmetry-breaking oscillation death via a saddle-node bifurcation among the coupled identical oscillators. The limiting factor facilities the onset of symmetric oscillation death among the coupled nonidentical oscillators. It is known that the nontrivial amplitude death state manifests via a subcritical pitchfork bifurcation in general. Nevertheless, here we observe the transition to the nontrivial amplitude death via a SNIPER bifurcation. The in-phase oscillatory state loses its stability via the SNIPER bifurcation, resulting in the manifestation of the nontrivial amplitude death state, whereas the out-of-phase oscillatory state loses its stability via a homoclinic bifurcation, resulting in an unstable oscillatory state. Multistabilities among the various dynamical states are also observed. We have also deduced the evolution equation for the perturbation governing the stability of the observed dynamical states and stability conditions for SNIPER and pitchfork bifurcations. The generic nature of the effect of the limiting factor is also reinforced using two distinct nonlinear oscillators.


Assuntos
Difusão , Dinâmica não Linear
6.
Chaos ; 31(8): 083130, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470257

RESUMO

The celebrated Kuramoto model provides an analytically tractable framework to study spontaneous collective synchronization and comprises globally coupled limit-cycle oscillators interacting symmetrically with one another. The Sakaguchi-Kuramoto model is a generalization of the basic model that considers the presence of a phase lag parameter in the interaction, thereby making it asymmetric between oscillator pairs. Here, we consider a further generalization by adding an interaction that breaks the phase-shift symmetry of the model. The highlight of our study is the unveiling of a very rich bifurcation diagram comprising of both oscillatory and non-oscillatory synchronized states as well as an incoherent state: There are regions of two-state as well as an interesting and hitherto unexplored three-state coexistence arising from asymmetric interactions in our model.

7.
Phys Rev E ; 104(6-1): 064206, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030866

RESUMO

We consider a globally coupled Winfree model comprised of a phase-dependent influence function and sensitive function, and unravel the impact of offset and integer parameters, characterizing the shape of the influence function, on the phase diagram of the Winfree model. The decreasing value of the offset parameter decreases the degree of positive phase shift among the oscillators by promoting the negative phase shift, which indeed favors the onset of multistability among the synchronous oscillatory state and asynchronous stable steady states in a large region of the phase diagram. Further, large integer parameters lead to brief pulses of the influence function, which again enhances the effect of the offset parameter. There is an explosive transition to a synchronous oscillatory state from an asynchronous steady state via a Hopf bifurcation. Dynamical transitions and multistability emerge through saddle-node, pitchfork, and homoclinic bifurcations in the phase diagram. We deduce two ordinary differential equations corresponding to the two macroscopic variables from the population of globally coupled Winfree oscillators using the Ott-Antonsen ansatz. We also deduce various bifurcation curves analytically from the reduced low-dimensional macroscopic variables for the exactly solvable case. The analytical curves exactly match the simulation boundaries in the phase diagram.

8.
Phys Rev E ; 102(1-1): 012206, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794959

RESUMO

The Kuramoto model serves as a paradigm to study the phenomenon of spontaneous collective synchronization. We study here a nontrivial generalization of the Kuramoto model by including an interaction that breaks explicitly the rotational symmetry of the model. In an inertial frame (e.g., the laboratory frame), the Kuramoto model does not allow for a stationary state, that is, a state with time-independent value of the so-called Kuramoto (complex) synchronization order parameter z≡re^{iψ}. Note that a time-independent z implies r and ψ are both time independent, with the latter fact corresponding to a state in which ψ rotates at zero frequency (no rotation). In this backdrop, we ask: Does the introduction of the symmetry-breaking term suffice to allow for the existence of a stationary state in the laboratory frame? Compared to the original model, we reveal a rather rich phase diagram of the resulting model, with the existence of both stationary and standing wave phases. While in the former the synchronization order parameter r has a long-time value that is time independent, one has in the latter an oscillatory behavior of the order parameter as a function of time that nevertheless yields a nonzero and time-independent time average. Our results are based on numerical integration of the dynamical equations as well as an exact analysis of the dynamics by invoking the so-called Ott-Antonsen ansatz that allows to derive a reduced set of time-evolution equations for the order parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...