Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 36(4): 59, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236784

RESUMO

An endogenous homoethanol pathway (glucose/1.2 xylose => 2 pyruvate => 2 ethanol) was previously engineered in Escherichia coli SZ410 via eliminating acid-producing pathways and anaerobic expression of the pyruvate dehydrogenase complex (aceEF-lpd operon). This ethanologenic derivative was subsequently engineered through adaptive evolution and partial deletion of the RNase G, resulting in an improved strain of E. coli RM10 for ethanol production using C6 and C5 sugars. Nevertheless, compared to the ethanol tolerance and/or ethanol titer achieved by industrial yeast, further incremental improvement of RM10 was needed for ethanol production using cellulosic biomass derived C6 and C5 sugars. In this study, the role of aldB gene (encoding for acetaldehyde dehydrogenase, AldB, which oxidizes acetaldehyde to acetic acid) was evaluated for ethanol/acetaldehyde tolerance and xylose fermentation by RM10. Deletion of aldB gene decreased ethanol tolerance, fermentative cell growth and ethanol production from xylose; while overexpression of aldB gene improved fermentative cell growth, and increased ethanol production from xylose. The improvement is likely attributed to preventing acetaldehyde accumulation (a toxic intermediate of homoethanol pathway) via AldB catalyzed oxidation.


Assuntos
Aldeído Oxirredutases/metabolismo , Escherichia coli/crescimento & desenvolvimento , Etanol/metabolismo , Xilose/metabolismo , Aldeído Oxirredutases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Deleção de Genes
2.
J Ind Microbiol Biotechnol ; 44(2): 221-228, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27900494

RESUMO

D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L-1 of glucose, producing 184-191 g L-1 of D-lactic acid, with a volumetric productivity of 4.38 g L-1 h-1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L-1 of glucose, producing 146-150 g L-1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L-1 h-1, a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.


Assuntos
Escherichia coli/metabolismo , Fermentação , Ácido Láctico/biossíntese , Técnicas de Cultura Celular por Lotes , Escherichia coli/genética , Evolução Molecular , Glucose/metabolismo , Microbiologia Industrial , Microrganismos Geneticamente Modificados
3.
BMC Syst Biol ; 10: 31, 2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-27083875

RESUMO

BACKGROUND: Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. RESULTS: The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over that achieved by AI05 (pAI02). CONCLUSIONS: Increasing reducing power (NADH equivalent) output per glucose catabolized was achieved by anaerobic expression of both the pdh operon (pyruvate dehydrogenase) and the sdhCDAB-sucABCD operon, resulting in a strain capable of generating 10 NADH equivalent per glucose under anaerobic condition. The new E. coli strain AI21 (pAI02) achieved an actual 96 % conversion of xylose to xylitol (via synthetic respiration), and 6 xylitol (from xylose) per glucose catabolized (YRPG = 6, the highest known value). This strategy can be used to engineer microbial strains for the production of other reduced products from redox neutral sugars using glucose as a source of reducing power.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Xilitol/metabolismo , Xilose/metabolismo , Anaerobiose , Escherichia coli/citologia , Escherichia coli/enzimologia , Fermentação , Óperon/genética , Oxirredução , Via de Pentose Fosfato , Regiões Promotoras Genéticas/genética
4.
BMC Biotechnol ; 16: 19, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895857

RESUMO

BACKGROUND: A thermal tolerant stereo-complex poly-lactic acid (SC-PLA) can be made by mixing Poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA) at a defined ratio. This environmentally friendly biodegradable polymer could replace traditional recalcitrant petroleum-based plastics. To achieve this goal, however, it is imperative to produce optically pure lactic acid isomers using a cost-effective substrate such as cellulosic biomass. The roadblock of this process is that: 1) xylose derived from cellulosic biomass is un-fermentable by most lactic acid bacteria; 2) the glucose effect results in delayed and incomplete xylose fermentation. An alternative strain devoid of the glucose effect is needed to co-utilize both glucose and xylose for improved D-lactic acid production using a cellulosic biomass substrate. RESULTS: A previously engineered L-lactic acid Escherichia coli strain, WL204 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA ΔadhE, ΔldhA::ldhL), was reengineered for production of D-lactic acid, by replacing the recombinant L-lactate dehydrogenase gene (ldhL) with a D-lactate dehydrogenase gene (ldhA). The glucose effect (catabolite repression) of the resulting strain, JH13, was eliminated by deletion of the ptsG gene which encodes for IIBC(glc) (a PTS enzyme for glucose transport). The derived strain, JH14, was metabolically evolved through serial transfers in screw-cap tubes containing glucose. The evolved strain, JH15, regained improved anaerobic cell growth using glucose. In fermentations using a mixture of glucose (50 g L(-1)) and xylose (50 g L(-1)), JH15 co-utilized both glucose and xylose, achieving an average sugar consumption rate of 1.04 g L(-1)h(-1), a D-lactic acid titer of 83 g L(-1), and a productivity of 0.86 g L(-1) h(-1). This result represents a 46 % improved sugar consumption rate, a 26 % increased D-lactic acid titer, and a 48 % enhanced productivity, compared to that achieved by JH13. CONCLUSIONS: These results demonstrated that JH15 has the potential for fermentative production of D-lactic acid using cellulosic biomass derived substrates, which contain a mixture of C6 and C5 sugars.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Xilose/metabolismo , Meios de Cultura , Escherichia coli/genética , Fermentação , Ácido Láctico/análise , Engenharia Metabólica
5.
Bioresour Technol ; 169: 559-565, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25103032

RESUMO

In this study, a genetically engineered Escherichia coli strain, HBUT-D (ΔpflB Δpta ΔfrdABCD ΔadhE Δald ΔcscR), was initially evaluated on a laboratory scale (7 L) in a glucose (130 g L(-1)) mineral salts medium for d-lactic acid fermentation using 6N KOH, Ca(OH)2 or NH4OH as the neutralizing agent. Fermentations neutralized by Ca(OH) 2 achieved a volumetric productivity of 6.35 g L(-1) h(-1), tripling that achieved by KOH (1.71 g L(-1) h(-1)) and NH4OH (1.5 g L(-1) h(-1)). The facilitative effect of Ca(OH)2 neutralization was then demonstrated on a pilot scale (6 ton vessel, 130 kg glucose ton(-1)), resulting in a volumetric productivity of 6 kg ton(-1) h(-1), a titer of 126 kg ton(-1), a yield of 97%, and an optical purity of 99.5%. These results demonstrated that E. coli HBUT-D is a promising strain for large scale d-lactic acid fermentation using mineral salts medium and Ca(OH)2 for neutralization.


Assuntos
Hidróxido de Cálcio/farmacologia , Escherichia coli/metabolismo , Fermentação/efeitos dos fármacos , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Biocatálise/efeitos dos fármacos , Análise Custo-Benefício , Escherichia coli/efeitos dos fármacos , Engenharia Metabólica/economia , Projetos Piloto
6.
Bioresour Technol ; 148: 394-400, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24063823

RESUMO

The D-lactic acid producing strain, Escherichia coli HBUT-D, was reengineered for L(+)-lactic acid fermentation by replacing the D-lactate dehydrogenase gene (ldhA) with an L(+)-lactate dehydrogenase gene (ldhL) from Pedicoccus acidilactici, followed by adaptive evolution in sucrose. The resulting strain, WYZ-L, has enhanced expression of the sucrose operon (cscA and cscKB). In 100 g L(-1) of sucrose fermentation using mineral salt medium, WYZ-L produced 97 g L(-1) of l(+)-lactic acid, with a yield of 90%, a maximum productivity of 3.17 g L(-1)h(-1) and an optical purity of greater than 99%. In fermentations using sugarcane molasses and corn steep liquor without additional nutrients, WYZ-L produced 75 g L(-1) of l(+)-lactic acid, with a yield of 85%, a maximum productivity of 1.18 g L(-1)h(-1), and greater than 99% optical purity. These results demonstrated that WYZ-L has the potential to use waste molasses and corn steep liquor as a resource for L(+)-lactic acid fermentation.


Assuntos
Adaptação Biológica , Escherichia coli/genética , Fermentação , Engenharia Genética , Ácido Láctico/biossíntese , Melaço , Zea mays/metabolismo , Glucose/metabolismo , Lactato Desidrogenases/metabolismo , Sacarose/metabolismo , Resíduos/análise
7.
Microb Cell Fact ; 12: 57, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758664

RESUMO

BACKGROUND: Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to its competition with food resources, an alternative non-food substrate such as cellulosic biomass is needed for L-lactic acid fermentation. Nevertheless, the substrate (sugar stream) derived from cellulosic biomass contains significant amounts of xylose, which is unfermentable by most lactic acid bacteria. However, the microorganisms that do ferment xylose usually carry out heterolactic acid fermentation. As a result, an alternative strain should be developed for homofermentative production of optically pure L-lactic acid using cellulosic biomass. RESULTS: In this study, an ethanologenic Escherichia coli strain, SZ470 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA), was reengineered for homofermentative production of L-lactic acid from xylose (1.2 mole xylose = > 2 mole L-lactic acid), by deleting the alcohol dehydrogenase gene (adhE) and integrating the L-lactate dehydrogenase gene (ldhL) of Pediococcus acidilactici. The resulting strain, WL203, was metabolically evolved further through serial transfers in screw-cap tubes containing xylose, resulting in the strain WL204 with improved anaerobic cell growth. When tested in 70 g L-1 xylose fermentation (complex medium), WL204 produced 62 g L-1 L-lactic acid, with a maximum production rate of 1.631 g L-1 h-1 and a yield of 97% based on xylose metabolized. HPLC analysis using a chiral column showed that an L-lactic acid optical purity of 99.5% was achieved by WL204. CONCLUSIONS: These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates, which contain a significant amount of xylose.


Assuntos
Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Xilose/metabolismo , Álcool Desidrogenase/deficiência , Álcool Desidrogenase/genética , Proteínas de Bactérias/genética , Biomassa , Fermentação , Engenharia Genética , L-Lactato Desidrogenase/genética , Ácido Láctico/síntese química , Pediococcus/enzimologia , Pediococcus/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres , Polímeros/síntese química , Estereoisomerismo
8.
World J Microbiol Biotechnol ; 29(7): 1225-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23435875

RESUMO

Anaerobic homofermentative production of reduced products requires additional reducing power (NADH and/or NADPH) output from glucose catabolism. Previously, with an anaerobically expressed pyruvate dehydrogenase operon (aceEF-lpd), we doubled the reducing power output to four NADH per glucose (or 1.2 xylose) catabolized anaerobically, which satisfied the NADH requirement to establish a non-transgenic homoethanol pathway (1 glucose or 1.2 xylose --> 2 acetyl-CoA + 4 NADH --> 2 ethanol) in the engineered strain, Escherichia coli SZ420 (∆frdBC ∆ldhA ∆ackA ∆focA-pflB ∆pdhR::pflBp6-pflBrbs-aceEF-lpd). In this study, E. coli SZ420 was further engineered for reduction of xylose to xylitol by (1) deleting the alcohol dehydrogenase gene (adhE) to divert NADH from the ethanol pathway; (2) deleting the glucose-specific PTS permease gene (ptsG) to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose; (3) cloning the aldose reductase gene (xylI) of Candida boidinii to reduce xylose to xylitol. The resulting strain, E. coli AI05 (pAGI02), could in theory simultaneously uptake glucose and xylose, and utilize glucose as a source of reducing power for the reduction of xylose to xylitol, with an expected yield of four xylitol for each glucose consumed (YRPG = 4) under anaerobic conditions. In resting cell fermentation tests using glucose and xylose mixtures, E. coli AI05 (pAGI02) achieved an actual YRPG value of ~3.6, with xylitol as the major fermentation product and acetate as the by-product.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Xilitol/metabolismo , Xilose/metabolismo , Anaerobiose , Candida/enzimologia , Candida/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Biotechnol Lett ; 34(11): 2069-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22791225

RESUMO

Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of D-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100 g sucrose l(-1) into 85 g D-lactic acid l(-1) in 72-84 h in mineral salts medium with a volumetric productivity of ~1 g l(-1) h(-1), a product yield of 85 % and D-lactic acid optical purity of 98.3 %, and with a minor by-product of 4 g acetate l(-1). HBUT-D thus has great potential for production of D-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Sacarose/metabolismo , Biomassa , Biotecnologia , Fermentação , Engenharia Genética/métodos , Glucose/metabolismo , Isomerismo , Ácido Láctico/metabolismo , Redes e Vias Metabólicas
10.
J Ind Microbiol Biotechnol ; 39(8): 1101-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22776992

RESUMO

A homobutanol fermentation pathway was engineered in a derivative of Escherichia coli B (glucose [glycolysis] => 2 pyruvate + 2 NADH; pyruvate [pyruvate dehydrogenase] => acetyl-CoA + NADH; 2 acetyl-CoA [butanol pathway enzymes] + 4 NADH => butanol; summary stoichiometry: glucose => butanol). Initially, the native fermentation pathways were eliminated from E. coli B by deleting the genes encoding for lactate dehydrogenase (ldhA), acetate kinase (ackA), fumarate reductase (frdABCD), pyruvate formate lyase (pflB), and alcohol dehydrogenase (adhE), and the pyruvate dehydrogenase complex (aceEF-lpd) was anaerobically expressed through promoter replacement. The resulting strain, E. coli EG03 (ΔfrdABCD ΔldhA ΔackA ΔpflB Δ adhE ΔpdhR ::pflBp6-aceEF-lpd ΔmgsA), could generate 4 NADH for every glucose oxidized to two acetyl-CoA through glycolysis and the pyruvate dehydrogenase complex. However, EG03 lost its ability for anaerobic growth due to the lack of NADH oxidation pathways. When the butanol pathway genes that encode for acetyl-CoA acetyltransferase (thiL), 3-hydroxybutyryl-CoA dehydrogenase (hbd), crotonase (crt), butyryl-CoA dehydrogenase (bcd, etfA, etfB), and butyraldehyde dehydrogenase (adheII) were cloned from Clostridium acetobutylicum ATCC 824, and expressed in E. coli EG03, a balanced NADH oxidation pathway was established for homobutanol fermentation (glucose => 4 NADH + 2 acetyl-CoA => butanol). This strain was able to convert glucose to butanol (1,254 mg l(-1)) under anaerobic condition.


Assuntos
1-Butanol/metabolismo , Reatores Biológicos , Butanóis/metabolismo , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Biocombustíveis , Butiril-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Escherichia coli/classificação , Escherichia coli/genética , Glucose/metabolismo , Glicólise , NAD/metabolismo , Oxirredução , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
11.
J Ind Microbiol Biotechnol ; 39(7): 977-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22374228

RESUMO

Previously, a native homoethanol pathway was engineered in Escherichia coli B by deletions of competing pathway genes and anaerobic expression of pyruvate dehydrogenase (PDH encoded by aceEF-lpd). The resulting ethanol pathway involves glycolysis, PDH, and alcohol dehydrogenase (AdhE). The E. coli B-derived ethanologenic strain SZ420 was then further improved for ethanol tolerance (up to 40 g l(-1) ethanol) through adaptive evolution. However, the resulting ethanol tolerant mutant, SZ470, was still unable to complete fermentation of 75 g l(-1) xylose, even though the theoretical maximum ethanol titer would have been less than 40 g l(-1) should the fermentation have reached completion. In this study, the cra (encoding for a catabolite repressor activator) and the HSR2 region of rng (encoding for RNase G) were deleted from SZ470 in order to improve xylose fermentation. Deletion of the HSR2 domain resulted in significantly increased mRNA levels (47-fold to 409-fold) of multiple glycolytic genes (pgi, tpiA, gapA, eno), as well as the engineered ethanol pathway genes (aceEF-lpd, adhE) and the transcriptional regulator Fnr (fnr). The higher adhE mRNA level resulted in increased AdhE activity (>twofold). Although not measured, the increase of other mRNAs might also enhance expressions of their encoding proteins. The increased enzymes would then enable the resulting strain, RM10, to achieve increased cell growth and complete fermentation of 75 g l(-1) xylose with an 84% improved ethanol titer (35 g l(-1)), compared to that (19 g l(-1)) obtained by the parent, SZ470. However, deletion of cra resulted in a negative impact on cell growth and xylose fermentation, suggesting that Cra is important for long-term fermentative cell growth.


Assuntos
Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Etanol/metabolismo , Microbiologia Industrial , Xilose/metabolismo , Arabinose/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fermentação , Redes e Vias Metabólicas , RNA Mensageiro/metabolismo
12.
J Ind Microbiol Biotechnol ; 38(9): 1371-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21188614

RESUMO

Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l(-1) ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l(-1)) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l(-1) and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Fermentação , Xilose/metabolismo , Evolução Molecular Direcionada , Escherichia coli/crescimento & desenvolvimento , Etanol/toxicidade , Viabilidade Microbiana , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...