Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 16(5): e0250445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956829

RESUMO

The African oil palm (Elaeis guineensis Jacq) is a crop that is widely distributed in tropical regions around the world; however, this crop is subject to limitations such as rapid trunk growth and susceptibility to bud rot and red ring diseases particularly in South America. To overcome these limitations, national breeding and conservation programs have been established, and there is a need to identify parental palms from natural populations of the American oil palm (E. oleifera H.B.K. Cortes) with desirable yield and morphological traits (i.e., yield production and bunch number) and with high genetic diversity. However, in Peru the morphological and genetic data related to this important crop is limited. In this study, we characterized the morphological and yield and estimated the genetic diversity using 12 neutral microsatellite markers (simple sequence repeats, SSRs) across 72 oil palm individuals belonging to the E. oleifera germplasm collection located in the tropical region of Ucayali, Peru. Our results showed that morphological and yield traits explained approximately 40.39% of the variability within the Peruvian germplasm. Furthermore, Yield Production was highly correlated with two yield traits: Bunch Number (0.67) and Average weight per bunch (0.78). Based on the yield and morphological traits, a clustering analysis was performed and three phenotypic groups were identified (1, 2 and 3) in which groups 1 and 3 showed high scores associated primarily with yield traits. Microsatellite markers revealed 143 alleles, 11.92 ± 4.72 alleles per locus (A) and an expected heterozygosity (He) of 0.69 ± 0.045. A structural analysis identified three populations (k = 3), that were not related to the phenotypic groups. Interestingly, a multiple allele background was identified within the groups using multilocus and phylogenetic relationship analyses. This is the first Peruvian report regarding E. oleifera that shows preliminary data of the morphological and yield traits and genetic data, and highlight the importance of this information to set up future steps to national breeding strategies and improve the conservation of genetic material of E. oleifera. Overall, these novel findings could contribute to the development of the local oil palm industry in Peru.


Assuntos
Arecaceae/anatomia & histologia , Arecaceae/genética , Filogenia , Alelos , Arecaceae/citologia , Genótipo , Repetições de Microssatélites , Peru , Fenótipo , Melhoramento Vegetal
2.
Pathogens ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801386

RESUMO

The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72-0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67-0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74-0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.

3.
J Infect Dis ; 223(8): 1466-1477, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32822474

RESUMO

BACKGROUND: Malaria is highly heterogeneous: its changing malaria microepidemiology needs to be addressed to support malaria elimination efforts at the regional level. METHODS: A 3-year, population-based cohort study in 2 settings in the Peruvian Amazon (Lupuna, Cahuide) followed participants by passive and active case detection from January 2013 to December 2015. Incidence and prevalence rates were estimated using microscopy and polymerase chain reaction (PCR). RESULTS: Lupuna registered 1828 infections (1708 Plasmodium vivax, 120 Plasmodium falciparum; incidence was 80.7 infections/100 person-years (95% confidence interval [CI] , 77.1-84.5). Cahuide detected 1046 infections (1024 P vivax, 20 P falciparum, 2 mixed); incidence was 40.2 infections/100 person-years (95% CI, 37.9-42.7). Recurrent P vivax infections predominated onwards from 2013. According to PCR data, submicroscopic predominated over microscopic infections, especially in periods of low transmission. The integration of parasitological, entomological, and environmental observations evidenced an intense and seasonal transmission resilient to standard control measures in Lupuna and a persistent residual transmission after severe outbreaks were intensively handled in Cahuide. CONCLUSIONS: In 2 exemplars of complex local malaria transmission, standard control strategies failed to eliminate submicroscopic and hypnozoite reservoirs, enabling persistent transmission.


Assuntos
Malária Falciparum , Malária Vivax , Estudos de Coortes , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Peru/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Prevalência
4.
PLoS Negl Trop Dis ; 13(11): e0007876, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710604

RESUMO

Despite efforts made over decades by the Peruvian government to eliminate malaria, Plasmodium vivax remains a challenge for public health decision-makers in the country. The uneven distribution of its incidence, plus its complex pattern of dispersion, has made ineffective control measures based on global information that lack the necessary detail to understand transmission fully. In this sense, population genetic tools can complement current surveillance. This study describes the genetic diversity and population structure from September 2012 to March 2015 in three geographically distant settlements, Cahuide (CAH), Lupuna (LUP) and Santa Emilia (STE), located in the Peruvian Amazon. A total 777 P. vivax mono-infections, out of 3264, were genotyped. Among study areas, LUP showed 19.7% of polyclonal infections, and its genetic diversity (Hexp) was 0.544. Temporal analysis showed a significant increment of polyclonal infections and Hexp, and the introduction and persistence of a new parasite population since March 2013. In STE, 40.1% of infections were polyclonal, with Hexp = 0.596. The presence of four genetic clusters without signals of clonal expansion and infections with lower parasite densities compared against the other two areas were also found. At least four parasite populations were present in CAH in 2012, where, after June 2014, malaria cases decreased from 213 to 61, concomitant with a decrease in polyclonal infections (from 0.286 to 0.18), and expectedly variable Hexp. Strong signals of gene flow were present in the study areas and wide geographic distribution of highly diverse parasite populations were found. This study suggests that movement of malaria parasites by human reservoirs connects geographically distant malaria transmission areas in the Peruvian Amazon. The maintenance of high levels of parasite genetic diversity through human mobility is a critical barrier to malaria elimination in this region.


Assuntos
Transmissão de Doença Infecciosa , Genótipo , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/classificação , Plasmodium vivax/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Técnicas de Genotipagem , Humanos , Incidência , Lactente , Recém-Nascido , Estudos Longitudinais , Malária Vivax/transmissão , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Epidemiologia Molecular , Peru/epidemiologia , Plasmodium vivax/isolamento & purificação , Adulto Jovem
5.
PLoS One ; 12(10): e0185742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982155

RESUMO

BACKGROUND: Loop-mediated isothermal DNA amplification (LAMP) methodology offers an opportunity for point-of-care (POC) molecular detection of asymptomatic malaria infections. However, there is still little evidence on the feasibility of implementing this technique for population screenings in isolated field settings. METHODS: Overall, we recruited 1167 individuals from terrestrial ('road') and hydric ('riverine') communities of the Peruvian Amazon for a cross-sectional survey to detect asymptomatic malaria infections. The technical performance of LAMP was evaluated in a subgroup of 503 samples, using real-time Polymerase Chain Reaction (qPCR) as reference standard. The operational feasibility of introducing LAMP testing in the mobile screening campaigns was assessed based on field-suitability parameters, along with a pilot POC-LAMP assay in a riverine community without laboratory infrastructure. RESULTS: LAMP had a sensitivity of 91.8% (87.7-94.9) and specificity of 91.9% (87.8-95.0), and the overall accuracy was significantly better among samples collected during road screenings than riverine communities (p≤0.004). LAMP-based diagnostic strategy was successfully implemented within the field-team logistics and the POC-LAMP pilot in the riverine community allowed for a reduction in the turnaround time for case management, from 12-24 hours to less than 5 hours. Specimens with haemolytic appearance were regularly observed in riverine screenings and could help explaining the hindered performance/interpretation of the LAMP reaction in these communities. CONCLUSIONS: LAMP-based molecular malaria diagnosis can be deployed outside of reference laboratories, providing similar performance as qPCR. However, scale-up in remote field settings such as riverine communities needs to consider a number of logistical challenges (e.g. environmental conditions, labour-intensiveness in large population screenings) that can influence its optimal implementation.


Assuntos
DNA de Protozoário/genética , Malária/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Malária/epidemiologia , Malária/parasitologia , Masculino , Peru/epidemiologia , Projetos Piloto , Plasmodium/genética , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
6.
Malar J ; 16(1): 312, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778210

RESUMO

BACKGROUND: Understanding the dynamics of malaria transmission in diverse endemic settings is key for designing and implementing locally adapted and sustainable control and elimination strategies. A parasitological and epidemiological survey was conducted in September-October 2012, as a baseline underlying a 3-year population-based longitudinal cohort study. The aim was to characterize malaria transmission patterns in two contrasting ecological rural sites in the Peruvian Amazon, Lupuna (LUP), a riverine environment, and Cahuide (CAH), associated with road-linked deforestation. METHODS: After a full population census, 1941 individuals 3 years and older (829 in LUP, 1112 in CAH) were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites by microscopy and PCR. Species-specific parasite prevalence was estimated overall and by site. Multivariate logistic regression models assessed risk factors for parasite infection by PCR, while SaTScan detected spatial clusters of PCR-positive individuals within each site. In addition, data from routine malaria surveillance in the period 2009-2012 were obtained. RESULTS: Parasite prevalence by PCR was higher in CAH than in LUP for Plasmodium vivax (6.2% vs. 3.9%) and for Plasmodium falciparum (2.6% vs. 1.2%). Among PCR-confirmed infections, asymptomatic (Asy) parasite carriers were always more common than symptomatic (Sy) infections for P. vivax (Asy/Sy ratio: 2/1 in LUP and 3.7/1 in CAH) and for P. falciparum (Asy/Sy ratio: 1.3/1 in LUP and 4/1 in CAH). Sub-patent (Spat) infections also predominated over patent (Pat) infections for both species: P. vivax (Spat/Pat ratio: 2.8/1 in LUP and 3.7/1 in CAH) and P. falciparum malaria (Spat/Pat ratio: 1.9/1 in LUP and 26/0 in CAH). For CAH, age, gender and living in a household without electricity were significantly associated with P. vivax infection, while only age and living in a household with electricity was associated with P. falciparum infection. For LUP, only household overcrowding was associated with P. falciparum infection. The spatial analysis only identified well-defined clusters of P. vivax and P. falciparum infected individuals in CAH. Reported malaria incidence indicated that malaria transmission has long occurred in LUP with primarily seasonal patterns, and confirmed a malaria outbreak in CAH since May 2012. CONCLUSIONS: This parasitological and epidemiological baseline assessment demonstrates that malaria transmission and parasite prevalence is heterogeneous in the Peruvian Amazon, and influenced by local socio-demographics and ecological contexts. Riverine and road construction/deforestation contexts must be taken into account in order to carry out effective anti-malaria control and elimination efforts.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Ecossistema , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Prevalência , Fatores de Risco , Adulto Jovem
7.
Am J Trop Med Hyg ; 95(6 Suppl): 133-144, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27799639

RESUMO

Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.


Assuntos
Malária Vivax/epidemiologia , Plasmodium vivax , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Doenças Endêmicas , Humanos , Incidência , Insetos Vetores , Peru/epidemiologia , Variantes Farmacogenômicos , Plasmodium vivax/genética , Saúde Pública , Fatores de Tempo
8.
Malar J ; 14: 326, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293655

RESUMO

BACKGROUND: Several platforms have been used to generate the primary data for microsatellite analysis of malaria parasite genotypes. Each has relative advantages but share a limitation of being time- and cost-intensive. A commercially available automated capillary gel cartridge system was assessed in the microsatellite analysis of Plasmodium vivax diversity in the Peruvian Amazon. METHODS: The reproducibility and accuracy of a commercially-available automated capillary system, QIAxcel, was assessed using a sequenced PCR product of 227 base pairs. This product was measured 42 times, then 27 P. vivax samples from Peruvian Amazon subjects were analyzed with this instrument using five informative microsatellites. Results from the QIAxcel system were compared with a Sanger-type sequencing machine, the ABI PRISM(®) 3100 Genetic Analyzer. RESULTS: Significant differences were seen between the sequenced amplicons and the results from the QIAxcel instrument. Different runs, plates and cartridges yielded significantly different results. Additionally, allele size decreased with each run by 0.045, or 1 bp, every three plates. QIAxcel and ABI PRISM systems differed in giving different values than those obtained by ABI PRISM, and too many (i.e. inaccurate) alleles per locus were also seen with the automated instrument. CONCLUSIONS: While P. vivax diversity could generally be estimated using an automated capillary gel cartridge system, the data demonstrate that this system is not sufficiently precise for reliably identifying parasite strains via microsatellite analysis. This conclusion reached after systematic analysis was due both to inadequate precision and poor reproducibility in measuring PCR product size.


Assuntos
Malária Vivax/parasitologia , Repetições de Microssatélites/genética , Tipagem Molecular/métodos , Plasmodium vivax/genética , DNA de Protozoário/genética , Humanos , Malária Vivax/epidemiologia , Epidemiologia Molecular , Peru/epidemiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...