Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109913, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799557

RESUMO

Here, we show that a NOT gated cell therapy (Tmod) can exploit antigens such as epidermal growth factor receptor (EGFR) and human leukocyte antigen-E (HLA-E) which are widely expressed on cancer cells. Noncancerous cells-despite high expression of these antigens-are protected from cytotoxicity by the action of an inhibitory receptor ("blocker") via a mechanism that involves blocker modulation of CAR surface expression. The blocker is triggered by the product of a polymorphic HLA allele (e.g., HLA-A∗02) deleted in a significant subset of solid tumors via loss of heterozygosity. Moreover, Tmod constructs that target mouse homologs of EGFR or HLA-E for activation, and a mouse-equivalent of HLA-A∗02 for inhibition, protect mice from toxicity caused by the CAR alone. The blocker also controls graft vs. host response in allogeneic T cells in vitro, consistent with the use of Tmod cells for off-the-shelf therapy without additional gene-editing.

2.
Front Immunol ; 13: 826747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359952

RESUMO

Progress toward improved solid-tumor treatment has long been hindered by the lack of truly tumor-specific targets. We have developed an approach to T cell therapy based on a dual-receptor system called Tmod™ that addresses this problem. The Tmod system exploits one of the few common genetic differences between tumor and normal cells: loss of heterozygosity (LOH). It utilizes the basic mechanistic logic that evolved in early vertebrates to mediate self vs. non-self discrimination, where an activation stimulus is blocked by self-ligands. Tmod constructs employ a chimeric antigen receptor (CAR) or T cell receptor (TCR) as activator component and a modified LIR-1 inhibitory receptor (blocker) to achieve high selectivity based on expression of the blocker antigen (Ag). Here we explore the in vitro pharmacology of a blocker directed at the HLA-A*02 Ag paired with either a mesothelin CAR or an HLA-A*11-restricted KRAS peptide TCR. While more sensitive to receptor expression changes on effector cells, we show that Tmod response is well-buffered against variations in Ag levels on target cells. In addition, the data reveal at least two distinguishable pharmacologic mechanisms of Tmod blocker function: (1) reducing activator sensitivity and (2) decreasing activation magnitude.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Antígenos HLA-A , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T
3.
Depress Anxiety ; 38(9): 985-995, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288243

RESUMO

BACKGROUND: Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS: We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS: BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS: Our study identified SERINC2 as a risk gene of BD in the Chinese population.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Estudos de Casos e Controles , China , Predisposição Genética para Doença , Humanos , Proteínas de Membrana/genética , Linhagem , Sequenciamento do Exoma
4.
Development ; 146(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092503

RESUMO

During embryonic gonad coalescence, primordial germ cells (PGCs) follow a carefully choreographed migratory route circumscribed by guidance signals towards somatic gonadal precursor cells (SGPs). In Drosophila melanogaster, SGP-derived Hedgehog (Hh), which serves as a guidance cue for the PGCs, is potentiated by mesodermally restricted HMGCoA-reductase (Hmgcr) and the ABC transporter Multi-drug-resistant-49 (Mdr49). Given the importance of cholesterol modification in the processing and long-distance transmission of the Hh ligand, we have analyzed the involvement of the Niemann-Pick disease type C-1a (NPC1a) protein, a cholesterol transporter, in germ cell migration and Hedgehog signaling. We show that mesoderm-specific inactivation of Npc1a results in germ cell migration defects. Similar to Mdr49, PGC migration defects in the Npc1a embryos are ameliorated by a cholesterol-rich diet. Consistently, reduction in Npc1a weakens the ability of ectopic HMG Coenzyme A reductase (Hmgcr) to induce germ cell migration defects. Moreover, compromising Npc1a levels influences Hh signaling adversely during wing development, a process that relies upon long-range Hh signaling. Last, doubly heterozygous embryos (Mdr49/Npc1a) display enhanced germ cell migration defects when compared with single mutants (Npc1a/+ or Mdr49/+), supporting cooperative interaction between the two.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/metabolismo , Heterozigoto , Proteínas de Membrana/genética , Neurônios/metabolismo , Proteína C1 de Niemann-Pick , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Development ; 143(12): 2111-20, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122170

RESUMO

Coalescence of the embryonic gonad in Drosophila melanogaster requires directed migration of primordial germ cells (PGCs) towards somatic gonadal precursor cells (SGPs). It was recently proposed that the ATP-binding cassette (ABC) transporter Mdr49 functions in the embryonic mesoderm to facilitate the transmission of the PGC attractant from the SGPs; however, the precise molecular identity of the Mdr49-dependent guidance signal remained elusive. Employing the loss- and gain-of-function strategies, we show that Mdr49 is a component of the Hedgehog (hh) pathway and it potentiates the signaling activity. This function is direct because in Mdr49 mutant embryos the Hh ligand is inappropriately sequestered in the hh-expressing cells. Our data also suggest that the role of Mdr49 is to provide cholesterol for the correct processing of the Hh precursor protein. Supporting this conclusion, PGC migration defects in Mdr49 embryos are substantially ameliorated by a cholesterol-rich diet.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas Hedgehog/metabolismo , Alelos , Animais , Colesterol/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Epidérmicas , Epiderme/embriologia , Epistasia Genética , Comportamento Alimentar , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Ligantes , Mutação/genética , Transdução de Sinais , Asas de Animais/anormalidades , Asas de Animais/metabolismo , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...