RESUMO
BACKGROUND: Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. RESULTS: MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. CONCLUSIONS: The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date.
Assuntos
Estudo de Associação Genômica Ampla , Pinus , Mudança Climática , Genômica/métodos , Modelos Genéticos , Fenótipo , Pinus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , ÁrvoresRESUMO
Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.
Assuntos
Picea , Genômica/métodos , Genótipo , Fenótipo , Picea/genética , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
A thorough understanding of the heritability, genetic correlations and additive and non-additive variance components of tree growth and wood properties is a requisite for effective tree breeding. This knowledge is essential to maximize genetic gain, that is, the amount of increase in trait performance achieved annually through directional selection. Understanding the genetic attributes of traits targeted by breeding is also important to sustain decade-long genetic progress, that is, the progress made by increasing the average genetic value of the offspring as compared to that of the parental generation. In this study, we report quantitative genetic parameters for fifteen growth, wood chemical and physical traits for the world-famous Eucalyptus urograndis hybrid (E. grandis × E. urophylla). These traits directly impact the optimal use of wood for cellulose pulp, paper, and energy production. A population of 1,000 trees sampled in a progeny trial was phenotyped directly or following the development and use of near-infrared spectroscopy calibration models. Trees were genotyped with 33,398 SNPs and 24,001 DArT-seq genome-wide markers and genomic realized relationship matrices (GRM) were used for parameter estimation with an individual-tree additive-dominant mixed model. Wood chemical properties and wood density showed stronger genetic control than growth, cellulose and fiber traits. Additive effects are the main drivers of genetic variation for all traits, but dominance plays an equally or more important role for growth, singularly in this hybrid. GRM´s with >10,000 markers provided stable relationships estimates and more accurate parameters than pedigrees by capturing the full genetic relationships among individuals and disentangling the non-additive from the additive genetic component. Low correlations between growth and wood properties indicate that simultaneous selection for wood traits can be applied with minor effects on genetic gain for growth. Conversely, moderate to strong correlations between wood density and chemical traits exist, likely due to their interdependency on cell wall structure such that responses to selection will be connected for these traits. Our results illustrate the advantage of using genome-wide marker data to inform tree breeding in general and have important consequences for operational breeding of eucalypt urograndis hybrids.
Assuntos
Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Brasil , Eucalyptus/química , Genoma de Planta , Genótipo , Hibridização Genética , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Especificidade da Espécie , Espectroscopia de Luz Próxima ao Infravermelho , Árvores/química , Árvores/genética , Árvores/crescimento & desenvolvimento , Madeira/química , Madeira/genética , Madeira/crescimento & desenvolvimentoRESUMO
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach (ssGBLUP) allows genomic prediction to take into account both genotyped and non-genotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice.